A Question of Gross and Weighted Sharing of a Finite Set by Meromorphic Functions *

Indrajit Lahiri†

Received 9 August 2001

Abstract

We prove a uniqueness theorem for meromorphic functions sharing one finite set with weight two and this improves some results of Yi [11], Li and Yang [8] and Fang and Hua [2].

1 Introduction

Let f be a meromorphic function defined in the open complex plane \mathbb{C}. For $S \subset \mathbb{C} \cup \{\infty\}$ we define by $E_f(S)$ the set

$$E_f(S) = \bigcup_{a \in S} \{z : f(z) - a = 0\},$$

where an a-point of multiplicity m is counted m times.

In 1976, Gross [3] proved that there exist three finite sets S_1, S_2, S_3 such that any two entire functions f, g satisfying $E_f(S_j) = E_g(S_j)$ for $j = 1, 2, 3$ must be identical. In the same paper Gross asked the following question: Can one find two (or even one) finite sets S_1 and S_2 such that any two entire functions f and g satisfying $E_f(S_j) = E_g(S_j)$ for $j = 1, 2$ must be identical?

A set S for which two meromorphic functions f, g satisfying $E_f(S) = E_g(S)$ become identical is called a unique range set of meromorphic functions (cf. [4, 8]).

In 1982, Gross and Yang [4] proved the following theorem.

THEOREM A. Let $S = \{z : e^z + z = 0\}$. If two entire functions f, g satisfy $E_f(S) = E_g(S)$ then $f \equiv g$.

Since the set $S = \{z : e^z + z = 0\}$ contains infinitely many elements, the above result does not answer the question of Gross.

In 1994, Yi [10] exhibited a finite set S containing 15 elements which is a unique range set of entire functions and provided an affirmative answer to the question of Gross.

In 1995, Yi [11] and Li and Yang [8] independently proved the following result which gives a better answer to the question of Gross.

*Mathematics Subject Classifications: 30D35, 30D30.
†Department of Mathematics, University of Kalyani, West Bengal 741235, India.
THEOREM B. Let \(S = \{ z : z^7 - z^6 - 1 = 0 \} \). If two entire functions \(f, g \) satisfy \(E_f(S) = E_g(S) \) then \(f \equiv g \).

Extending Theorem B to meromorphic functions, recently Fang and Hua [2] proved the following theorem.

THEOREM C. Let \(S = \{ z : z^7 - z^6 - 1 = 0 \} \). If two meromorphic functions \(f, g \) are such that \(\Theta(\infty; f) > 11/12, \Theta(\infty; g) > 11/12 \) and \(E_f(S) = E_g(S) \) then \(f \equiv g \).

Here \(\Theta \) is the ramification index which is defined below.

In [6, 7] the notion of weighted sharing is introduced which we explain in the following definition.

DEFINITION 1. Let \(k \) be a nonnegative integer or infinity. For \(a \in C \cup \{ \infty \} \), we denote by \(E_k(a; f) \) the set of all \(a \)-points of \(f \) where an \(a \)-point of multiplicity \(m \) is counted \(m \) times if \(m \leq k \), and \(k+1 \) times if \(m > k \). If \(E_k(a; f) = E_k(a; g) \), we say that \(f \) and \(g \) share the value \(a \) with weight \(k \).

The definition implies that if \(f \), \(g \) share a value \(a \) with weight \(k \) then \(z_0 \) is a zero of \(f-a \) with multiplicity \(m(\leq k) \) if and only if it is a zero of \(g-a \) with multiplicity \(m(\leq k) \), and \(z_0 \) is a zero of \(f-a \) with multiplicity \(m(> k) \) if and only if it is a zero of \(g-a \) with multiplicity \(n(> k) \) where \(m \) is not necessarily equal to \(n \).

We say that \(f \), \(g \) share \((a, k) \) if \(f \), \(g \) share the value \(a \) with weight \(k \). Clearly if \(f \), \(g \) share \((a, k) \) then \(f \), \(g \) share \((a, p) \) for all integer \(p \) which satisfies \(0 \leq p < k \). Also we note that \(f \), \(g \) share a value \(a \) IM (ignoring multiplicity) or CM (counting multiplicity) if and only if \(f \), \(g \) share \((a, 0)\) or \((a, \infty)\) respectively.

DEFINITION 2. For \(S \subset C \cup \{ \infty \} \), we define \(E_f(S, k) \) as \(E_f(S, k) = \bigcup_{a \in S} E_k(a; f) \), where \(k \) is a nonnegative integer or infinity.

The above definition is in [6]. Clearly \(E_f(S) = E_f(S, \infty) \).

DEFINITION 3. A set \(S \) for which two meromorphic functions \(f, g \) satisfying \(E_f(S, k) = E_g(S, k) \) becomes identical is called a unique range set of weight \(k \) for meromorphic functions.

Unless stated otherwise, throughout the paper \(f \) and \(g \) are two nonconstant meromorphic functions. We now explain some basic definitions and notations of the value distribution theory (see e.g. [5]). We denote by \(n(r, f) \) the number of poles of \(f \) in \(|z| \leq r \), where a pole is counted according to its multiplicity, and by \(\pi(r, f) \) the number of distinct poles of \(f \) in \(|z| \leq r \). Also we put

\[
N(r, f) = \int_0^r \frac{n(t, f) - n(0, f)}{t} dt + n(0, f) \log r,
\]

and

\[
\overline{N}(r, f) = \int_0^r \frac{\pi(t, f) - \pi(0, f)}{t} dt + \pi(0, f) \log r.
\]

The quantities \(N(r, f), \overline{N}(r, f) \) are called respectively the counting function and reduced counting function of poles of \(f \). Let

\[
m(r, f) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{i\theta})| \, d\theta,
\]
where $\log^+ x = \log x$ if $x \geq 1$ and $\log^+ x = 0$ if $0 \leq x < 1$. We call $m(r, f)$ the proximity function of f. The sum $T(r, f) = m(r, f) + N(r, f)$ is called the Nevanlinna characteristic function of f. If a is a finite complex number, we put

$$m(r, a; f) = m \left(r, \frac{1}{f-a}\right), \quad N(r, a; f) = N \left(r, \frac{1}{f-a}\right), \quad \overline{N}(r, a; f) = \overline{N} \left(r, \frac{1}{f-a}\right).$$

The quantity

$$\Theta(a; f) = 1 - \limsup_{r \to \infty} \frac{\overline{N}(r, a; f)}{T(r, f)}$$

is called the ramification index, where $a \in \mathbb{C} \cup \{\infty\}$ and $\overline{N}(r, \infty; f) = \overline{N}(r, f)$. By the second fundamental theorem we know that the set $\{a : a \in \mathbb{C} \cup \{\infty\}, \Theta(a; f) > 0\}$ is countable and $\sum_a \Theta(a; f) \leq 2$. Finally we denote by $N_2(r, a; f)$ the counting function of a-points of f where an a-point of multiplicity m is counted m times if $m \leq 2$ and is counted twice if $m > 2$ (see e.g. [1]).

In this paper we prove the following theorem which improves Theorem B and Theorem C.

THEOREM 1. Let $S = \{z : z^7 - z^6 - 1 = 0\}$. If f and g satisfy $\Theta(\infty; f) + \Theta(\infty; g) > 3/2$ and $E_f(S, 2) = E_g(S, 2)$, then $f \equiv g$.

2 Preparatory Lemmas

In this section we present some lemmas which will be required to prove our main Theorem. The first one is in [9].

LEMMA 1. Let $P(f) = \sum_{j=0}^n a_j f^j$, where $a_0, a_1, \ldots, a_n (\neq 0)$ are such that $T(r, a_j) = S(r, f)$ for $j = 0, 1, \ldots, n$. Then $T(r, P(f)) = nT(r, f) + S(r, f)$.

LEMMA 2. If $\Theta(\infty; f) + \Theta(\infty; g) > 3/2$, then for $n \geq 3$, $f^{n-1}(f-1)g^{n-1}(g-1) \equiv 1$.

PROOF. Assume to the contrary that

$$f^{n-1}(f-1)g^{n-1}(g-1) \equiv 1. \tag{1}$$

Suppose f does not have any pole. Then from (1) it follows that g has no zero nor 1-point. So by the deficiency relation we get $\Theta(\infty; g) = 0$, which contradicts the given condition. So the lemma is proved in this case. Similarly we can prove the lemma when g does not have any pole. Now we suppose that f and g have poles. From (1), we see that if z_0 is a zero of f with multiplicity p then z_0 is a pole of g with multiplicity q such that $p(n-1) = nq$, i.e., $p = qn/(n-1)$. Since n, p, q are all positive integers, it follows that $p \geq n$. Hence $\Theta(0; f) \geq 1 - 1/n$. Again from (1), we see that if z_0 is an 1-point of f with multiplicity p then z_0 is a pole of g with multiplicity q such that $p = qn$ and so $p \geq n$. Hence $\Theta(0; f) \geq 1 - 1/n$. Similarly we can prove that $\Theta(0; g) \geq 1 - 1/n$ and $\Theta(1; g) \geq 1 - 1/n$. So by the deficiency relation we get

$$\Theta(0; f) + \Theta(1; f) + \Theta(0; g) + \Theta(1; g) + \Theta(\infty; f) + \Theta(\infty; g) \leq 4,$$

or,

$$4(1 - \frac{1}{n}) + \frac{3}{2} \leq 4.$$
or $n \leq 8/3$, a contradiction. This proves the lemma.

Lemma 3. If $\Theta(\infty; f) + \Theta(\infty; g) > 3/2$, then for $n \geq 4$, $f^{n-1}(f-1) \equiv g^{n-1}(g-1)$ implies $f \equiv g$.

Proof. Let

$$f^{n-1}(f-1) \equiv g^{n-1}(g-1).$$

(2)

Assume to the contrary that $f \not\equiv g$. Then from (2) we get

$$f \equiv 1 - \frac{y^{n-1}}{1 + y + y^2 + \cdots + y^{n-1}},$$

(3)

where $y = g/f$. If y is constant then $y \neq 1$. Also from (2) we see that $y^n \neq 1$ and $y^{n-1} \neq 1$ and so (2) implies

$$f \equiv \frac{1 - y^{n-1}}{1 - y^n},$$

which is a contradiction because f is nonconstant. Let y be nonconstant. From (3) we get by the first fundamental theorem and Lemma 1 that

$$T(r, f) = T(r, \sum_{i=0}^{n-1} \frac{1}{y^i}) + S(r, y) = (n-1)T(r, \frac{1}{y}) + S(r, y)$$

$$= (n-1)T(r, y) + S(r, y).$$

Now we note that any pole of y is not a pole of $1 - y^{n-1}/\sum_{j=1}^{n-1} y^j$. So from (3) it follows that

$$\sum_{k=1}^{n-1} N(r, u_k; y) \leq N(r, \infty; f),$$

where $u_k = \exp(2k\pi i/n)$ for $k = 1, 2, \ldots, n-1$. By the second fundamental theorem we get

$$(n-3)T(r, y) \leq \sum_{k=1}^{n-1} N(r, u_k; y) + S(r, y)$$

$$\leq N(r, \infty; f) + S(r, y)$$

$$< (1 - \Theta(\infty; f) + \varepsilon)T(r, f) + S(r, y)$$

$$= (n-1)(1 - \Theta(\infty; f) + \varepsilon)T(r, y) + S(r, y),$$

(4)

where $\varepsilon > 0$.

Again putting $y_1 = 1/y$, noting that $T(r, y) = T(r, y_1) + O(1)$ and proceeding as above we get

$$(n-3)T(r, y) \leq (n-1)(1 - \Theta(\infty; g) + \varepsilon)T(r, y) + S(r, y),$$

(5)

where $\varepsilon > 0$. From (4) and (5) we get in view of the given condition,

$$2(n-3)T(r, y)$$

$$\leq (n-1)(2 - \Theta(\infty; f) - \Theta(\infty; g) + 2\varepsilon)T(r, y) + S(r, y)$$

$$< (n-1)(1 + 2\varepsilon)T(r, y) + S(r, y),$$
which implies a contradiction for all sufficiently small positive \(\varepsilon \) due to the assumption that \(n \geq 4 \). Hence \(f \equiv g \). This completes the proof.

LEMMA 4. If \(f, g \) share \((1, 2)\), then one of the following holds: (i) \(T(r) \leq N_2(r, 0; f) + N_2(r, 0; g) + N_2(r, \infty; f) + N_2(r, \infty; g) + S(r, f) + S(r, g) \), where \(T(r) = \max\{T(r, f), T(r, g)\} \), (ii) \(fg \equiv 1 \), or, (iii) \(f \equiv g \).

The proof can be found in [7].

3 Proof of Theorem

Let \(F = f^6(f - 1) \) and \(G = g^6(g - 1) \). Since \(E_f(S, 2) = E_f(S, 2) \), it follows that \(F, G \) share \((1, 2)\). Also by Lemma 1, \(T(r, F) = 7T(r, f) + S(r, f) \) and \(T(r, G) = 7T(r, g) + S(r, g) \). Now

\[
N_2(r, 0; F) + N_2(r, 0; G) + N_2(r, \infty; G) + N_2(r, \infty; G) + S(r, F) + S(r, G)
\]

\[
\leq 2N(r, 0; f) + N_2(r, 0; f - 1) + 2N(r, 0; g)
\]

\[
+ N_2(r, 0; g - 1) + 2N(r, \infty; f) + 2N(r, \infty; g) + S(r, f) + S(r, g)
\]

\[
\leq \{6 + 2(2 - \Theta(\infty; f) - \Theta(\infty; g) + \varepsilon)\} T(r) + S(r, f) + S(r, g)
\]

\[
= (10 - 2\Theta(\infty; f) - 2\Theta(\infty; g) + 2\varepsilon) T(r) + S(r, f) + S(r, g),
\]

where \(\varepsilon > 0 \). Also we see that

\[
\max\{T(r, F), T(r, G)\} = 7T(r) + S(r, f) + S(r, g).
\]

From (6) and (7), we see that

\[
\max\{T(r, F), T(r, G)\} \\
\leq N_2(r, 0; F) + N_2(r, 0; G) + N_2(r, \infty; F) + N_2(r, \infty; G) + S(r, F) + S(r, G)
\]

if

\[
7T(r) \leq (10 - 2\Theta(\infty; f) - 2\Theta(\infty; g) + 2\varepsilon) T(r) + S(r, f) + S(r, g)
\]

i.e., if

\[
(2\Theta(\infty; f) + 2\Theta(\infty; g) - 3 - 2\varepsilon) T(r) \leq S(r, f) + S(r, g).
\]

Then a contradiction is reached for sufficiently small positive \(\varepsilon \) because \(\Theta(\infty; f) + \Theta(\infty; g) > 3/2 \). By Lemma 2, we see that \(FG \neq 1 \) because \(\Theta(\infty; f) + \Theta(\infty; g) > 3/2 \). Hence applying Lemma 4, we see that \(F \equiv G \) and so by Lemma 3, we get \(f \equiv g \). This completes the proof.

References

