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1. Introduction

In the Euclidean plane the definition of the area of the polygon harmonizes well with intuition,
since by the decomposition theorem of Farkas Bolyai [2] two polygons of the same area can
be decomposed into pairwise congruent polygons.
The definition of the measure of an unbounded polyhedron in two- and in three-dimensio-

nal Euclidean space [7] is likewise well-founded, since we obtain an inner characteriza-
tion of this measure by using the notions of endlike decomposition-equality and of endlike
completion-equality.
In hyperbolic plane H2 the definition, given for the measure of polygons (bounded or

unbounded) [8], can also be motivated by pointing out that the measure of the whole plane is
−2πk2 [9], and polygons of equal area are endlike decomposition-equal or endlike completion-
equal.
In this paper we investigate the measure of unbounded polyhedra in three-dimensional

hyperbolic space H3. This measure has a property similar to that of the measure of polyhedra
in Euclidean space: the measure of the union of a tetrahedron and of a trihedron is equal
to the measure of the trihedron. Furthermore, it also has a property in common with the
measure of polygons in the hyperbolic plane: the measure of the whole space is 4π. The
measure of polyhedra is given by the angles of the boundary polygons of the polyhedra
on the boundary sphere (or absolute) of the space H3. We emphasize that the volume is
unbounded.

2. Preliminary notions and theorems

Here we summarize in a dimension free manner some definitions and properties (theorems)
[3] which, while well-known, are important to us.
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We shall use the Poincarè’s conforme model in the course of our discussion. If H is
a subset of the space H3, then the intersection of the closure (with respect to the natural
topology of Euclidean space containing our model) of H with the boundary sphere ω of H3

will be denoted by Hω(= H̄ ∩ ω). For example, a circle h of ω is the ideal line of a plane N
of the hyperbolic space, hence h = Nω. In our figures we apply stereographic projection of
the boundary sphere ω onto the Euclidean plane.
A convex polyhedron is the closure of intersection of finitely many open halfspaces with

nonempty interior (it is proper). A point-set P , which can be represented as a union of
finitely many convex polyhedra is called a polyhedron. By the division (decomposition) into
two parts of a polyhedron by a plane we mean taking the closure of intersections of the
polyhedron with the open halfspaces defined by the plane.

2.1. A polyhedron can be decomposed in the sense of elementary geometry into finitely many
convex polyhedra Pi (i = 1, 2, . . . , n) in symbols

P = ∪ni=1Pi (int(Pi ∩ Pj) = ∅, i 6= j).

Two polyhedra A and B are called decomposition-equal, denoted by A ∼ B, if there exist
polyhedra Ai, Bi (i = 1, 2, . . . ,m) so that the following conditions are satisfied (∼= stands for
congruence):

A = ∪mi=1Ai, B = ∪
m
i=1Bi, Ai

∼= Bi (i = 1, 2, . . . ,m),

(int(Ai ∩ Aj) = ∅, int(Bi ∩Bj) = ∅ i 6= j).

2.2. The decomposition-equality of polyhedra is an equivalence relation.

Two polyhedra A and B are called completion-equal, denoted by A
+
∼B, if there exist poly-

hedra C,D, such that int(A ∩ C) = ∅, int(B ∩D) = ∅, C ∼ D, and A ∪ C ∼ B ∪D.

2.3. The completion-equality of polyhedra is an equivalence relation.

3. Polyhedra in hyperbolic 3-space

We shall represent polyhedra as the unions of special polyhedra called simplexes. We define
two kinds of simplexes, which will be called tetrahedron, trihedron base, respectively. The
tetrahedron is well-known. It is determined by its four proper or ideal vertices, it can be

bounded or else 1−, 2−, 3−, 4−asymptotic. We denote by
T (LEFG) the tetrahedron T with vertices L,E, F,G.
The trihedron base is the proper intersection of the halfspaces
H0, H1, H2, H3 under the condition that (H1 ∩ H2 ∩ H3)ω is
a triangle bounded by circle arcs, such that its circumscribed
circle h0 is the ideal line of the boundary plane of H0 and
H0ω ⊃ (H1 ∩ H2 ∩ H3)ω (Figure 1). We denote this simplex
by TB(H0H1H2H3). It is clear that the trihedron base TB is
uniquely determined by the triangle

TBω = (H1 ∩H2 ∩H3)ω.

PSfrag replacements
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Figure 1

Remark. The terminology trihedron base is motivated by the fact that if the common part
of the halfspaces H1, H2, H3 is a trihedron with vertex L, the edges of which intersect ω in the
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ideal points E,F,G, then, denoting by H0 the plane through the points E,F,G, the trihedron
is the union of the tetrahedron T (LEFG) and of the trihedron base TB(H0H1H2H3). Let
us denote this trihedron by TI(LEFG) :

TI(LEFG) = T (LEFG) ∪ TB(H0H1H2H3) (int(T ∩ TB) = ∅).

Theorem 1. A polyhedron is the union, in the sense of elementary geometry, of finitely
many simplexes:

P = ∪ni=1Si (int(Si ∩ Sj) = ∅, i 6= j).

Proof. By 2.1 it will be sufficient to prove Theorem 1 only for
convex polyhedra. The proof proceeds by induction on the
number k of halfspaces in the representation of the convex
polyhedron.

First we show that Theorem 1 is true for k = 1 because a
halfspace is a trihedron base, hence a simplex. Let a circle h0
be the ideal line of the boundary plane of a halfspaceH and let
R1, R2, R3 be optional points in h0. Then H = TB(HHHH)
and Hω = R1R2R34. The sides of the triangle R1R2R3 are
the arcs of the circle h0 (Figure 2).
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Figure 2

We have to prove two lemmas:

Lemma 1. In the Euclidean plane a polygon D (simply connected domain bounded by circle
arcs) can be decomposed by triangulation (if a vertex V of a triangle T1 is a point of a triangle
T2 then V is a vertex of the triangle T2) into triangles bounded by circle arcs (or segments)
and triangles are subsets of the circumscribed circle.

Proof. Let be D = A1A2 . . . An (Figure 3). Let A
1
i , A

2
i , . . . , A

2ri+1
i (i = 1, 2, . . . , n) be points

so that the point A2j+1i is on the arc AiAi+1 (An+1 = A1), also, the polygonal path

Li = A
1
i , A

2
i , . . . , A

2ri+1
i ⊂ D (i = 1, 2, . . . , n)

and either the polygonal path (segment) A2ri+1i A1i+1 ⊂ D or the polygonal path A
2ri+1
i Ai+1

A1i+1 ⊂ D. Also, these polygonal paths are disjoint and they bound the polygon D
′ ⊂ D,

hence
D = D′ ∪ (∪ni=1(∪

ri
j=1A

2j−1
i A2ji A

2j+1
i ) ∪ (∪ni=1Ti),

where Ti = A
2ri+1
i Ai+1A

1
i+14 or Ti = A

2ri+1
i A′i+1Ai+14∪ Ai+1A

′′
i+1A

1
i+14,

(A′i+1 is a point of the arc A
2ri+1
i Ai+1, A

′′
i+1 is a point of the arc Ai+1A

1
i+1, these triangles

are bounded by circle arc or segments.)
The polygon D′ can be decomposed by triangulation, so Lemma 1 is true.

Remark. Lemma 1 is true on the sphere too.

Lemma 2. The common part of the simplex S and of the halfspace H is the union, in the
sense of elementary geometry, of finitely many simplexes.
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Proof. If the simplex is a tetrahedron then this is clear, the parts will be tetrahedra.
If the simplex S is a trihedron base, then the domain Sω ∩Hω can be decomposed into

polygons (simply connected domains bounded by circle arcs):

Sω ∩Hω = ∪
n
i=1Di (int(Di ∩Dj) = ∅ i 6= j).

By Remark of Lemma 1 the domain Di can be decomposed by triangulation:

Sω ∩Hω = ∪
n
i=1(∪

mi
j=1Gij) (int(Gij 6= Gkl) i 6= k or j 6= l).

We denote by Sij the simplex for which Sijω = Gij.
Since (S∩H)\ (∪ni=1(∪

mi
j=1Sij)) is such kind of polyhedron which has ideal points at most

on its edges, we can decompose it into tetrahedra:

(S ∩H) \ (∪ni=1(∪
mi
j=1Sij)) = ∪

h
i=1Ti (int(Ti ∩ Tj), i 6= j).

So (S ∩H) = (∪ni=1(∪
mi
j=1Sij)) ∪ (∪

h
i=1Ti) is the expected decomposition.

Let us now prove the Theorem 1 itself. Let us suppose that Theorem 1 is true for a convex
polyhedron P = ∩ri=1Hi (r ≤ k, Hi are halfspaces).
If P = ∩k+1i=1Hi then by the condition

Pk = ∩
k
i=1Hi = ∪

m
i=1Si (Si are simplexes, int(Si ∩ Sj) = ∅, i 6= j).

By the Lemma 2, Si ∩Hk+1 = ∪
ri
h=1Sih. Hence

P = Pk ∩Hk+1 = (∪
m
i=1Si) ∩Hk+1 = ∪

m
i=1(Si ∩Hk+1) = ∪

m
i=1(∪

ri
h=1Sih)

(int(Sih ∩ Sjl) = ∅, i 6= j or h 6= l.
Thus the Theorem 1 is true for a convex polyhedron P = ∩ri=1Hi (r ≤ k + 1).
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4. The volume of polyhedra in hyperbolic 3-space

First we define the volume of simplexes. Let the length measure curvature coefficient k be
equal 1.

Volume of the tetrahedron: M(T ) = 0.

Let S be the trihedron base TB, and let the angles of TBω be α, β, γ.

Volume of the trihedron base: M(TB) = α+ β + γ − π.

Volume of the polyhedron P = ∪ni=1Si (int(Si ∩ Sj) = ∅, i 6= j) :

M(P ) =
n∑

i=1

M(Si).

Remark. Thus the volume of TI(LEFG) is the sum of the volume of the tetrahedron
T (LEFG) and of the volume of the trihedron base TB(H0H1H2H3) given by the bounding
planes

H ′0 = EFG, H
′
1 = LFG, H

′
2 = EFL, H

′
3 = EGL

of halfspaces H0, H1, H2, H3, respectively. Since the angles α, β, γ of TBω = EFG4 are just
the surface angles of the trihedron, M(TI) = α+ β + γ − π is the same as the usual area of
the spherical triangle.

5. Properties of the volume function

Theorem 2. The volume of the polyhedra is decomposition-invariant:

P = ∪ri=1S
′
i = ∪

s
i=1S

′′
i (int(S

′
i ∩ S

′
j) = ∅, int(S

′′
i ∩ S

′′
j ) = ∅, i 6= j)

implies
∑r
i=1M(S

′
i) =
∑s
i=1M(S

′′
i ).

Proof. Let Aij = S
′
i ∩ S

′′
j = ∪

m
k=1Aijk

(i, j, k : intAijk 6= ∅, int(Aijk ∩ Aijl) = ∅, k 6= l).

∪Aijk is a decomposition into simplexes of P .

Lemma. The volume of the simplex is decomposition-invariant:

S = ∪ni=1Si (int(Si ∩ Sj) = ∅, i 6= j) implies M(S) =
n∑

i=1

M(Si).

If the simplex S is a tetrahedron, then Si can only be tetrahedron as well, hence the lemma
is true.
If the simplex S is a trihedron base, then Si is either a trihedron base or tetrahedron.
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Let Si (1 ≤ i ≤ m) be a trihedron base and Si (m + 1 ≤ i ≤ n) a tetrahedron. Let
the angles of Sω be α, β, γ and those of Siω (1 ≤ i ≤ m) be αi, βi, γi (Figure 4). Since
Sω = ∪mi=1Siω we have to prove that

α+ β + γ − π =
m∑

i=1

(αi + βi + γi − π).

The number of the vertices of the domains Siω is b, the number of those lying in the interior
of the boundary of Sω or of Siω is h.
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Figure 4

Between these masses there is a relation by Euler’s theorem on polyhedra. The number of
surfaces is m + 1. The number of vertices is b. We get the number of edges twice if we add
up the number of edges of the triangles Siω (this is 3m) and the number of edges on the
boundary of Sω (this is 3 + h).

We have m+ 1 + b =
3m+ 3 + h

2
+ 2, hence m = 2b− h− 5,

m∑

i=1

(αi + βi + γi − π) = α+ β + γ + πh+ 2π(b− h− 3)−mπ = α+ β + γ − π.

On the basis of the lemma we have the equalities
r∑

i=1

M(S ′i) =
r∑

i=1

(∑

j,k

M(Aijk)
)
=

s∑

j=1

(∑

i,k

M(Aijk)
)
=

s∑

j=1

M(S ′′i )

and so Theorem 2 is proved.
Since the volume of the polyhedron is evidently isometry-invariant and additive, we have

the following

Theorem 3. If the polyhedra P, P ′ satisfy the relation P ∼ P ′ or P
+
∼P ′ then M(P ) =

M(P ′).

Now we are going to consider the converse of this theorem.

Theorem 4. If the polyhedra P and P ′ satisfy M(P ) =M(P ′) then P
+
∼P ′.
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Proof. If the polyhedra P and P ′ are trihedra, then there exist moves g and g′ so that the
edges of the trihedra gP and g′P ′ in our model are lines. Let the centre of the unit-sphere K
and K ′ be the vertex of the trihedra gP and g′P ′ respectively. Let G and G′ be the spherical
triangles of the trihedra gP and g′P ′ on the spheres K and K ′ respectively.
If M(P ) = M(P ′), then M(gP ) = M(g′P ′) and M(g) = M(G′). By the theorem of

Bolyai-Gerwin [1] G ∼ G′. Hence gP ∼ g′P ′ and P ∼ P ′, the Theorem 4 is true for trihedra
and evidently for bihedra and for halfspaces.
The definiton of the measure of the tetrahedron is also motivated by the following

Lemma. For a tetrahedron T and a halfspace H the relation T ∪H ∼ H holds.

Let L,E, F,G be the vertices of a non-asymptotic tetrahedron T , and let H be the halfspace
(EFG)L. It will be sufficient to prove the Lemma only for this halfspace H. If for an optional
halfspace H ′ we have int(T ∩H ′) = ∅, then because of H ′ ∼ H we have T ∪H ′ ∼ T ∪H ∼
H ∼ H ′.
If int(T ∩H ′) 6= ∅, then T ∪H ′ = (T \H ′) ∪H ′,

T \H ′ = ∪ki=1Ti (Ti tetrahedron, int(Ti ∪ Tj) = ∅, i 6= j) and

T ∪H ′ = (∪ki=1Ti) ∪H
′ = (∪k−1i=1 Ti) ∪ (Tk ∪H

′) ∼

(∪k−1i=1 Ti) ∪H
′ ∼ · · · ∼ (T1 ∪H

′) ∼ H ′ ∼ H.

The halfspace given by the plane incident to the points E,F,G and containing (not contain-
ing) point L, will be denoted by (EFG)L ((EFG)

L
).

T∪H is the union, in the sense of elementary geometry, of four disjoint trihedra (Figure 5).
The ideal point of the halfline of the line EF starting from E and containing (not con-

taining) F will be denoted by EF (E
F
). For the surface angle of the tetrahedron T (LEFG)

belonging to the edge EF we write ^EF .
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T0 = TI(LLELFLG) = (LEF )G ∩ (LFG)E ∩ (LEG)F ,
T1 = TI(EE

L
E
G
EF ) = (LEF )

G
∩ (EFG)

L
∩ (LEG)F ,

T2 = TI(FF
L
F
E
FG) = (LEF )G ∩ (LFG)

E
∩ (EFG)

L
,

T3 = TI(GG
L
D
F
GE) = (LEG)

F
∩ (LFG)E ∩ (EFG)

L
.

T0 ∪ T1 ∪ T2 ∪ T3 = T ∪H (int(Ti ∩ Tj) = ∅ i 6= j; 0 ≤ i ≤ 3, 0 ≤ j ≤ 3).
Now the surface angles of T1; T2; T3 given by the help of the surface angles of T are:

^EE
L
= π − ^LE, ^EE

G
= π − ^EG, ^EEF = ^EF ;

^FF
L
= π − ^LF, ^FF

E
= π − ^EF, ^FFG = ^FG;

^GG
L
= π − ^LG, ^GG

F
= π − ^FG, ^GGE = ^EG,

hence M(T ∪H) =M(TI(LLELFLG)) +M(TI(EE
L
E
G
EF ))+

+M(TI(FF
L
F
E
FG)) +M(TI(GG

L
G
F
GE)) = 2π =M(H).

The Theorem 4 is true for trihedra, the statement of the Lemma follows.
The proof is similar if the tetrahedron is 1−asymptotic and the vertex L is ideal point.

Tetrahedron T which is 2−, 3−, or 4−asymptotic can be decomposed into non-asymptotic
and 1−asymptotic tetrahedra: T = ∪ni=1Ti.

Then T ∪H = (∪ni=1Ti) ∪H = (∪
n−1
i=1 Ti) ∪ (Tn ∪H) ∼ (∪

n−1
i=1 Ti) ∪H.

Using this procedure repeatedly, we can see that (∪ni=1Ti) ∪H ∼ H.

Let us now prove the Theorem 4 itself.
Let P = ∪ni=1Si, P

′ = ∪n
′

i=1S
′
i, where the Si and the S

′
i can be trihedron bases or

tetrahedra.
Hence it will be sufficient to consider the case when Si (1 ≤ i ≤ m) and S ′i (1 ≤ i ≤ m

′)
are trihedron bases, Si (m + 1 ≤ i ≤ n) and S ′i (m

′ + 1 ≤ i ≤ n′) tetrahedra, and, say,
m ≤ m′.
By the Lemma, if the halfspaces H and H ′ satisfy int(H ∩ P ) = ∅, int(H ′ ∩ P ′) = ∅,

then
(∪ni=m+1Si) ∪H = (∪

n−1
i=m+1Si) ∪ (Sn ∪H) ∼ (∪

n−1
i=m+1Si) ∪H.

Using this procedure repeatedly, we can see that (∪ni=m+1Si) ∪H ∼ H. Similarly, we obtain
that (∪n

′

i=m′+1S
′
i) ∪H

′ ∼ H ′.
On the other hand it is clear that for the halfspaces H0i and H

′
0i of the trihedron bases

Si (1 ≤ i ≤ m) and S ′i (1 ≤ i ≤ m
′) each of the polyhedra H0i \ Si and H ′0i \ S

′
i is the union

of three bihedra.
Hence M(Si) = 2π −M(H0i \ Si) and M(S ′i) = 2π −M(H

′
0i \ S

′
i), by

∑m
i=1M(Si) =∑m′

i=1M(S
′
i) we have

2mπ −M(∪mi=1(H0i \ Si)) = 2m
′π −M(∪m

′

i=1(H
′
0i \ S

′
i)),

and consequently, M(∪m
′

i=1(H
′
0i \ S

′
i)) =M(∪

m
i=1(H0i \ Si)) + 2(m

′ −m)π.
Using Theorem 4 for bihedra and for halfspaces we can see that

(∪m
′

i=1(H
′
0i \ S

′
i)) ∼ (∪

m
i=1(H0i \ Si)) ∪ (∪

m′−m
i=1 Hi),
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where the Hi (1 ≤ i ≤ m′ −m, Hi ∩Hj = ∅ i 6= j) are halfspaces and

(∪m
′−m
i=1 Hi) ∩ (∪

m
i=1(H0i \ Si)) = ∅.

By Q = H ∪ (∪mi=1(H0i \ Si)) ∪ (∪
m′−m
i=1 Hi) ∼ H

′ ∪ (∪m
′

i=1(H
′
0i \ S

′
i)) = Q

′

P ∪Q = (∪ni=1Si) ∪H ∪ (∪
m
i=1(H0i \ Si)) ∪ (∪

m′−m
i=1 Hi) ∼

∼ (∪mi=1Si) ∪ (∪
n
i=m+1Si) ∪H ∪ (∪

m
i=1(H0i \ Si)) ∪ (∪

m′−m
i=1 Hi) ∼

∼ (∪mi=1Si) ∪H ∪ (∪
m
i=1(H0i \ Si)) ∪ (∪

m′−m
i=1 Hi) =

= H ∪ (∪mi=1(H0i) ∪ (∪
m′−m
i=1 Hi) ∼ H

′ ∪ (∪m
′

i=1H
′
0i) =

= H ′ ∪ (∪m
′

i=1(H
′
0i \ S

′
i)) ∪ (∪

m′

i=1S
′
i) ∼

∼ H ′ ∪ (∪n
′

i=m′+1S
′
i) ∪ (∪

m′

i=1(H
′
0i \ S

′
i)) ∪ (∪

m′

i=1S
′
i) =

= (∪n
′

i=1S
′
i) ∪H

′ ∪ (∪m
′

i=1(H
′
0i \ S

′
i)) = P

′ ∪Q,′

thus the Theorem 4 is true.

Theorem 5. On the set of the polyhedra of the hyperbolic space there exists uniquely such
kind of real valued function that satisfies the following four characteristics:
1. M(P ) =M(P ′), if P ∼= P ′,
2. M(P1) +M(P2) =M(P1 ∪ P2), if int(P1 ∩ P2) = ∅,
3. M(H3) = 4π,
4. M(A) ≥ 0, if A is a bihedron (its angle α is positive).

Proof. The existence of this function follows from the previous theorems.
If a function M(P ) satisfies the above
mentioned characteristics, there the bi-
hedron A, with angle α, M(A) =
f(α) is such as follows, in the case of
0 < α ≤ 2π is positive valued, satis-
fied the Cauchy function-equality and
f(2π) = 4π. It is known ([3], p. 61),
that f(α) = 2α is the unique proper
function.
We calculate the value of the function
M(TB) belonging to the trihedron
base TB, with angles α, β, γ, where we
use the notations of the Figure 6 and
we know that
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α1 = β2, β1 = γ2, γ1 = α2 and α1 + α+ α2 = β1 + β + β2 = γ1 + γ + γ2 = π :

M(TB) =M(H)− f(α1)− f(β1)− f(γ1) = 2π − 2α1 − 2β1 − 2γ1 =

= 2π − α1 − β2 − β1 − γ2 − γ1 − α2 = α+ β + γ − π.

Remark. It is valid a similar theorem in the hyperbolic plane H2.
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