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HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH

GENERALIZED HYPERGEOMETRIC FUNCTIONS

GANGADHARAN. MURUGUSUNDARAMOORTHY AND KALIEPPAN.UMA

Abstract. The generalized hypergeometric function is used here to introduce

a new class of complex valued harmonic functions which are orientation pre-
serving and univalent in the open unit disc. Among the results presented in

this paper include the coefficient bounds, distortion inequality and covering
property, extreme points and certain inclusion results for this generalized class

of functions.

1. Introduction

A continuous function f = u + iv is a complex- valued harmonic function in
a complex domain Ω if both u and v are real and harmonic in Ω. In any simply-
connected domain D ⊂ Ω, we can write f = ℎ + g, where ℎ and g are analytic in
D. We call ℎ the analytic part and g the co-analytic part of f. A necessary and
sufficient condition for f to be locally univalent and orientation preserving in D is
that ∣ℎ′(z)∣ > ∣g′(z)∣ in D (see [2]).

Denote by ℋ the family of functions

f = ℎ+ g (1.1)

which are harmonic, univalent and orientation preserving in the open unit disc
U = {z : ∣z∣ < 1} so that f is normalized by f(0) = ℎ(0) = fz(0)− 1 = 0. Thus, for
f = ℎ+ g ∈ ℋ, the functions ℎ and g analytic U can be expressed in the following
forms:

ℎ(z) = z +

∞∑
n=2

anz
n, g(z) =

∞∑
n=1

bnz
n (∣b1∣ < 1),

and f(z) is then given by

f(z) = z +

∞∑
n=2

anz
n +

∞∑
n=1

bnzn (∣b1∣ < 1). (1.2)

We note that the familyℋ of orientation preserving, normalized harmonic univalent
functions reduces to the well known class S of normalized univalent functions if the
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co-analytic part of f is identically zero, i.e. g ≡ 0. Also, we denote by ℋ the
subfamily of ℋ consisting of harmonic functions f = ℎ+ g of the form

f(z) = z −
∞∑
n=2

∣an∣zn +

∞∑
n=1

∣bn∣zn, (∣b1∣ < 1) (1.3)

introduced and studied by Silverman[12].
The Hadamard product (or convolution) of two power series

�(z) = z +

∞∑
n=2

�nz
n (1.4)

and

 (z) = z +

∞∑
n=2

 nz
n (1.5)

in S is defined (as usual) by

(� ∗  )(z) = �(z) ∗  (z) = z +

∞∑
n=2

�n nz
n. (1.6)

For positive real values of �1, . . . , �l and �1, . . . , �m (�j ∕= 0,−1, . . . ; j = 1, 2, . . . ,m)
the generalized hypergeometric function lFm(z) is defined by

lFm(z) ≡ lFm(�1, . . . �l;�1, . . . , �m; z) :=

∞∑
n=0

(�1)n . . . (�l)n
(�1)n . . . (�m)n

zn

n!
(1.7)

(l ≤ m+ 1; l,m ∈ N0 := N ∪ {0}; z ∈ U),

where N denotes the set of all positive integers and (a)n is the Pochhammer symbol
defined by

(a)n =

{
1, n = 0
a(a+ 1)(a+ 2) . . . (a+ n− 1), n ∈ N. (1.8)

The notation lFm is quite useful for representing many well-known functions
such as the exponential, the Binomial, the Bessel and Laguerre polynomial. Let

H[�1, . . . �l;�1, . . . , �m] : S → S

be a linear operator defined by

H[�1, . . . �l;�1, . . . , �m]�(z) := z lFm(�1, �2, . . . �l;�1, �2 . . . , �m; z) ∗ �(z)

= z +

∞∑
n=2

!n(�1; l;m) �nz
n, (1.9)

where

!n(�1; l;m) =
(�1)n−1 . . . (�l)n−1
(�1)n−1 . . . (�m)n−1

1

(n− 1)!
. (1.10)

For notational simplicity, we use a shorter notationH l
m[�1] forH[�1, . . . �l;�1, . . . , �m]

in the sequel.It follows from (1.9) that

H1
0 [1]�(z) = �(z), H1

0 [2]�(z) = z�′(z).

The linear operator H l
m[�1] is called Dziok-Srivastava operator (see [4])introduced

by Dziok and Srivastava which was subsequently extended by Dziok and Raina [3]
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by using the generalized hypergeometric function , recently Srivastava etal.([11])
defined the linear operator ℒ�,�1

�,l,m as follows:

ℒ0
�,�1

�(z) = �(z),

ℒ1,�1

�,l,m�(z) = (1− �)H l
m[�1]�(z) + �(H l

m[�1]�(z))′ = ℒ�1

�,l,m�(z), (� ≥ 0), (1.11)

ℒ2,�1

�,l,m�(z) = ℒ�1

�,l,m(ℒ1,�1

�,l,m�(z)) (1.12)

and in general ,

ℒ�,�1

�,l,m�(z) = ℒ�1

�,l,m(ℒ�−1,�1

�,l,m �(z)), (l ≤ m+1; l,m ∈ N0 = N∪{0}; z ∈ U). (1.13)

If the function �(z) is given by (1.4), then we see from (1.9), (1.10),(1.11)
and(1.13) that

ℒ�,�1

�,l,m�(z) := z +

∞∑
n=2

!�n(�1;�; l;m) �n z
n, (1.14)

where

!�n(�1;�; l;m) =

(
(�1)n−1 . . . (�l)n−1
(�1)n−1 . . . (�m)n−1

[1 + �(n− 1)]

(n− 1)!

)�
, (n ∈ N ∖ {1}, � ∈ N0)(1.15)

unless otherwise stated. We note that when � = 1 and � = 0 the linear operatorℒ�,�1

�,l,m

would reduce to the familiar Dziok-Srivastava linear operator given by (see [4]), in-
cludes (as its special cases) various other linear operators introduced and studied
by Carlson and Shaffer [1], Owa [9]and Ruscheweyh [10] .

In view of the relationship (1.15) and the linear operator (1.14) for the harmonic
function f = ℎ+ g given by (1.1), we define the operator

ℒ�,�1

�,l,mf(z) = ℒ�,�1

�,l,mℎ(z) + ℒ�,�1

�,l,mg(z), (1.16)

and introduce below a new subclass ℒH(� ;�; 
) of ℋ in terms of the operator given
by (1.16).

Let ℒH(� ;�; 
) denote a subclass of ℋ consisting of functions of the form f =
ℎ+ g given by (1.2) satisfying the condition that

∂

∂�

(
argℒ�,�1

�,l,mf(z)
)
> 
 = Re

{
z(ℒ�,�1

�,l,mℎ(z))′ − z(ℒ�,�1

�,l,mg(z))′

ℒ�,�1

�,l,mℎ(z) + (ℒ�,�1

�,l,mg(z))

}
≥ 
, (1.17)

(
z = rei�; 0 ≤ � < 2�; 0 ≤ r < 1; 0 ≤ 
 < 1; z ∈ U

)
where ℒ�,�1

�,l,mf(z) is given by (1.16). We also let ℒH(� ;�; 
) = ℒH(� ;�; 
) ∩ℋ.
In this paper, we obtain coefficient conditions for the classes ℒH(� ;�; 
) and

ℒH(� ;�; 
). A representation theorem, inclusion properties and distortion bounds
for the class ℒH(� ;�; 
) are also established.

2. Coefficient bounds

Due to Jahangiri [7], we state the following sufficient coefficient bound for the
harmonic functions f ∈ ℋ(
) the class of harmonic starlike functions of order

, (0 ≤ 
 < 1) a subclass of ℋ consisting of functions of the form f = ℎ + g given
by (1.2) satisfying the condition that ∂

∂� (argf(z)) > 
.
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Theorem 2.1. [7]. Let f = ℎ+ g be given by (1.2). If

∞∑
n=1

[
n− 

1− 


∣an∣+
n+ 


1− 

∣bn∣
]
≤ 2, (2.1)

where a1 = 1 and 0 ≤ 
 < 1, then f ∈ ℋ(
).

The following result gives a sufficient coefficient condition for the harmonic func-
tions f ∈ ℒH(� ;�; 
).

Theorem 2.2. Let f = ℎ+ g be given by (1.2). If

∞∑
n=1

[
n− 

1− 


∣an∣+
n+ 


1− 

∣bn∣
]
!�n(�1;�; l;m) ≤ 2, (2.2)

where a1 = 1 and 0 ≤ 
 < 1, then f ∈ ℒH(� ;�; 
).

Proof. Since n ≤ min{n−
1−
 !
�
n(�1;�; l;m); n+
1−
 !

�
n(�1;�; l;m)}, it follows from The-

orem2.1 that f ∈ ℋ(
) and hence f is harmonic, orientation preserving and univa-
lent in U. Suppose the condition (2.2) holds true. To show that f ∈ ℒH(� ;�; 
),
we show (in view of (1.17)) that

ℜ

⎧⎨⎩
z
(
ℒ�,�1

�,l,mℎ(z)
)′
− z

(
ℒ�,�1

�,l,mg(z)
)′

ℒ�,�1

�,l,mℎ(z) + ℒ�,�1

�,l,mg(z)

⎫⎬⎭ = ℜ
{
A(z)

B(z)

}
≥ 
 (z ∈ U),

where

A(z) = z(ℒ�,�1

�,l,mℎ(z))′−z(ℒ�,�1

�,l,mg(z))′ = z+

∞∑
n=2

n!�n(�1;�; l;m)anz
n−

∞∑
n=1

n!�n(�1;�; l;m)bnz
n

and

B(z) = z +

∞∑
n=2

!�n(�1;�; l;m)anz
n +

∞∑
n=1

!�n(�1;�; l;m)bnz
n.

Using the fact that Re {w} ≥ 
 if and only if ∣1− 
 + w∣ ≥ ∣1 + 
 − w∣, it suffices
to show that

∣A(z) + (1− 
)B(z)∣ − ∣A(z)− (1 + 
)B(z)∣ ≥ 0. (2.3)

Substituting for A(z) and B(z) in (2.3), and performing elementary calculations,
we find that

∣A(z) + (1− 
)B(z)∣ − ∣A(z)− (1 + 
)B(z)∣

≥ 2(1− 
)∣z∣

{
2−

∞∑
n=1

[
n− 

1− 


∣an∣+
n+ 


1− 

∣bn∣
]
!�n(�1;�; l;m)∣z∣n−1

}

> 2(1− 
)

{
2−

∞∑
n=1

[
n− 

1− 


∣an∣+
n+ 


1− 

∣bn∣
]
!�n(�1;�; l;m)

}
≥ 0,

which implies that f(z) ∈ ℒH(� ;�; 
). □
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The harmonic function

f(z) = z +

∞∑
n=2

1− 

(n− 
)!�n(�1;�; l;m)

xnz
n +

∞∑
n=1

1− 

(n+ 
)!�n(�1;�; l;m)

yn(z)n,

(2.4)

where
∞∑
n=2
∣xn∣ +

∞∑
n=1
∣yn∣ = 1 shows that the coefficient bound given by (2.2) is

sharp.
The functions of the form (2.4) are in ℒH(� ;�; 
) because

∞∑
n=1

(
(n− 
)!�n(�1;�; l;m)

1− 

∣an∣+

(n+ 
)!�n(�1;�; l;m)

1− 

∣bn∣
)

=1 +

∞∑
n=2

∣xn∣+
∞∑
n=1

∣yn∣ = 2.

Our next theorem gives a necessary and sufficient condition for functions of the
form (1.3) to be in the class ℒH(� ;�; 
).

Theorem 2.3. For a1 = 1 and 0 ≤ 
 < 1, f = ℎ+ g ∈ ℒH(� ;�; 
) if and only if

∞∑
n=1

[
n− 

1− 


∣an∣+
n+ 


1− 

∣bn∣
]
!�n(�1;�; l;m) ≤ 2. (2.5)

Proof. Since ℒH(� ;�; 
) ⊂ ℒH(� ;�; 
), we only need to prove the ”only if” part
of the theorem. To this end, for functions f of the form (1.3), we notice that the
condition

ℜ

{
z(ℒ�,�1

�,l,mℎ
′(z))− z(ℒ�,�1

�,l,mg
′(z))

ℒ�,�1

�,l,mℎ(z) + (ℒ�,�1

�,l,mg(z))

}
≥ 


implies that

ℜ

⎧⎨⎩
(1− 
)z −

∞∑
n=2

(n− 
)!�n(�1;�; l;m)anz
n −

∞∑
n=1

(n+ 
)!�n(�1;�; l;m)bnz
n

z −
∞∑
n=2

!�n(�1;�; l;m)anzn +
∞∑
n=1

!�n(�1;�; l;m)bnz
n

⎫⎬⎭ ≥ 0.

The above required condition must hold for all values of z in U. Upon choosing
the values of z on the positive real axis where 0 ≤ z = r < 1, we must have

(1− 
)−
∞∑
n=2

(n− 
)!�n(�1;�; l;m)anr
n−1 −

∞∑
n=1

(n+ 
)!�n(�1;�; l;m)bnr
n−1

1−
∞∑
n=2

!�n(�1;�; l;m)anrn−1 +
∞∑
n=1

!�n(�1;�; l;m)bnrn−1

≥ 0. (2.6)

If the condition (2.5) does not hold, then the numerator in (2.6) is negative for r sufficiently
close to 1. Hence, there exist z0 = r0 in (0,1) for which the quotient of (2.6) is negative.
This contradicts the required condition for f(z) ∈ ℒH(� ;�; 
). This completes the proof
of the theorem. □

3. Distortion bounds and Extreme Points

By applying the condition (2.5) and employing similar steps of derivation as
given in [5, 6, 8, 7], we state the following results without proof.
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Theorem 3.1. (Distortion bounds) Let f ∈ ℒH(� ;�; 
), then (for ∣z∣ = r < 1)

(1− b1)r − 1

!�2 (�1;�; l;m)

(
1− 

2− 


− 1 + 


2− 

b1

)
r2 ≤ ∣f(z)∣

≤ (1 + b1)r +
1

!�2 (�1;�; l;m)

(
1− 

2− 


− 1 + 


2− 

b1

)
r2.

Corollary 3.2. If f(z) ∈ ℒH(� ;�; 
), then{
w : ∣w∣ < 2!�2 (�1;�; l;m)− 1− [!�2 (�1;�; l;m)− 1]


(2− 
)!�2 (�1;�; l;m)
− 2!�2 (�1;�; l;m)− 1− [!�2 (�1;�; l;m) + 1]


(2− 
)!�2 (�1;�; l;m)
b1

}
⊂ f(U).

The extreme points of closed convex hulls of ℒH(� ;�; 
) denoted by clcoℒH(� ;�; 
).

Theorem 3.3. (Extreme Points) A function f(z) ∈ clcoℒH(� ;�; 
) if and only

if f(z) =
∞∑
n=1

[Xnℎn(z) + Yngn(z)] , where

ℎ1(z) = z, ℎn(z) = z − 1− 

(n− 
)!�n(�1;�; l;m)

zn (n ≥ 2), gn(z) = z +
1− 


(n+ 
)!�n(�1;�; l;m)
zn (n ≥ 2),

∞∑
n=1

(Xn + Yn) = 1, Xn ≥ 0 and Yn ≥ 0.

In particular, the extreme points of ℒH(� ;�; 
) are {ℎn} and {gn}.

4. Inclusion Results

The following result gives the convex combinations of the class ℒH(� ;�; 
).

Theorem 4.1. The family ℒH(� ;�; 
) is closed under convex combinations.

Proof. Let fi ∈ ℒH(� ;�; 
) (i = 1, 2, . . . ),where

fi(z) = z −
∞∑
n=2

∣ai,n∣zn +

∞∑
n=2

∣bi,n∣zn.

The convex combination of fi may be written as

∞∑
i=1

tifi(z) = z −
∞∑
n=2

( ∞∑
i=1

ti∣ai,n∣

)
zn +

∞∑
n=1

( ∞∑
i=1

ti∣bi,n∣

)
zn,

provided that
∞∑
i=1

ti = 1 (0 ≤ ti ≤ 1).

Applying the inequality (2.5) of Theorem 2.3, we obtain

∞∑
n=2

(n− 
)!�n(�1;�; l;m)

1− 


(
∞∑
i=1

ti∣ai,n∣

)
+

∞∑
n=1

(n+ 
)!�n(�1;�; l;m)

1− 


(
∞∑
i=1

ti∣bi,n∣

)

=

∞∑
i=1

ti

(
∞∑
n=2

(n− 
)!�n(�1;�; l;m)

1− 
 ∣ai,n∣+
∞∑
n=1

(n+ 
)!�n(�1;�; l;m)

1− 
 ∣bi,n∣

)

≤
∞∑
i=1

ti = 1,

and therefore,
∞∑
i=1

tifi ∈ ℒH(� ;�; 
). □
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Theorem 4.2. Let f(z) ∈ ℒH(� ;�; 
) and F (z) ∈ ℒH(� ;�; �), where 0 ≤ � ≤ 
 <
1, then
f(z) ∗ F (z) ∈ ℒH(� ;�; 
) ⊂ ℒH(� ;�; �).

Proof. Let f(z) = z −
∞∑
n=2
∣an∣zn +

∞∑
n=1
∣bn∣zn ∈ ℒH(� ;�; 
) and F (z) = z −

∞∑
n=2
∣An∣zn +

∞∑
n=1
∣Bn∣zn ∈ ℒH(� ;�; �), then

f(z) ∗ F (z) = z −
∞∑
n=2

∣an∣∣An∣zn +

∞∑
n=1

∣bn∣∣Bn∣zn.

From the assertion that f(z) ∗ F (z) ∈ ℒH(� ;�; �), we note that ∣An∣ ≤ 1 and
∣Bn∣ ≤ 1. In view of Theorem 2.3 and the inequality 0 ≤ � ≤ 
 < 1, we have

∞∑
n=2

(n− �)!�n(�1;�; l;m)

1− �
∣an∣ ∣An∣+

∞∑
n=1

(n+ �)!�n(�1;�; l;m)

1− �
∣bn∣ ∣Bn∣

≤
∞∑
n=2

(n− �)!�n(�1;�; l;m)

1− �
∣an∣+

∞∑
n=1

(n+ �)!�n(�1;�; l;m)

1− �
∣bn∣

≤
∞∑
n=2

(n− 
)!�n(�1;�; l;m)

1− 

∣an∣+

∞∑
n=1

(n+ 
)!�n(�1;�; l;m)

1− 

∣bn∣ ≤ 1,

by Theorem 2.3, f(z) ∈ ℒH(� ;�; 
). Hence f(z) ∗F (z) ∈ ℒH(� ;�; 
) ⊂ ℒH(� ;�; �).
□

Lastly, we consider the closure property of the class ℒH(� ;�; 
) under the gen-
eralized Bernardi-Libera -Livingston integral operatorℒc[f(z)] which is defined by

ℒc[f(z)] =
c+ 1

zc

z∫
0

tc−1f(t)dt (c > −1).

We prove the following result.

Theorem 4.3. Let f(z) ∈ ℒH(� ;�; 
), then ℒc[f(z)] ∈ ℒH(� ;�; 
)

Proof. Using (1.1) and (1.3), we get

ℒc[f(z)] =
c+ 1

zc

z∫
0

tc−1ℎ(t)dt+
c+ 1

zc

z∫
0

tc−1g(t)dt.

=
c+ 1

zc

z∫
0

tc−1

(
t−

∞∑
n=2

∣an∣tn
)
dt+

c+ 1

zc

z∫
0

tc−1

( ∞∑
n=1

∣bn∣tn
)
dt

= z −
∞∑
n=2

Anz
n +

∞∑
n=1

Bnz
n,



76 GANGADHARAN. MURUGUSUNDARAMOORTHY AND KALIEPPAN.UMA

where An = c+1
c+n ∣an∣ and Bn = c+1

c+n ∣bn∣. Hence

∞∑
n=1

[
n− 

1− 


(
c+ 1

c+ n
∣an∣

)
+
n+ 


1− 


(
c+ 1

c+ n
∣bn∣
)]

!�n(�1;�; l;m)

≤
∞∑
n=1

[
n− 

1− 


∣an∣+
n+ 


1− 

∣bn∣
]
!�n(�1;�; l;m)

≤ 2,

since f(z) ∈ ℒH(� ;�; 
), therefore by Theorem 2.3, ℒc(f(z)) ∈ ℒH(� ;�; 
). □

Concluding Remarks: By choosing � = 1 and � = 0 the various results
presented in this paper would provide interesting extensions and generalizations of
those considered earlier for simpler harmonic function classes (see [5, 6, 8, 12]). The
details involved in the derivations of such specializations of the results presented in
this paper are fairly straight- forward.

Acknowledgements : The authors would like to thank the referee and Prof.R.K.Raina
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