Isomorphism Theorems of Polygroups

B. DAVVAZ
Department of Mathematics, Yazd University, Yazd, Iran
davvaz@yazduni.ac.ir

Abstract

A polygroup is a multivalued algebraic system satisfying the group like axioms. In recently, polygroups have been investigated by a number of authors because such groups are related to algebraic combinatorics, color schemes and relations, etc. In this paper, three isomorphism theorems of polygroups will be established and the Fundamental homomorphism theorem of polygroups is also proved. Our results generalize the classical isomorphism theorems of groups to polygroups.¹

1 Introduction

The concepts of hyperstructure and hypergroup were first introduced by Marty in (1934, [13]). As a special hypergroup, S.D. Comer considered polygroups and pointed out that polygroups have application in color schemes [3, 4]. He also developed the algebraic theory for polygroups. In recent years, the author and Poursalavati [8] introduced the matrix representations of polygroups over hyperrings and investigated the structure of polygroup hyperrings so that some results of group rings are generalized. Davvaz in [9], using the concept of generalized permutation defined permutation polygroups, also see [10].

In this paper, we consider the normal subpolygroups and strong homomorphisms between polygroups. As a consequence, by using the obtained results, we establish the isomorphism theorems of polygroups. Our results extend the

¹Key words: Polygroup, Normal subpolygroup, Strong homomorphism, Fundamental relation, Fundamental group.

AMS Mathematics Subject Classification: 20N20
classical results of groups to polygroups. Moreover, by considering the fundamental relation $β^*$ on a polygroup, we prove the fundamental theorem for polygroups.

For notations and terminologies not given in this paper, the reader is referred to the monographs of Corsini and Leoreanu [5] and [6].

2 Subpolygroups and strong homomorphisms

First, we summarize the preliminary definitions and results required in the sequel. Let H be a non-empty set and let $P^*(H)$ be the set of all non-empty subsets of H. A hyperoperation on H is a map $° : H \times H \rightarrow P^*(H)$ and the couple $(H, °)$ is called a hypergroupoid. If A and B are non-empty subsets of H, then we denote $A ° B = \bigcup_{a \in A, b \in B} a ° b, \quad x ° A = \{x\} ° A$ and $A ° x = A ° \{x\}$.

A hypergroupoid $(H, °)$ is called a semihypergroup if for all x, y, z of H we have $(x ° y) ° z = x ° (y ° z)$, which means that

$$\bigcup_{u \in x ° y} u ° z = \bigcup_{v \in y ° z} x ° v.$$

We say that a semihypergroup $(H, °)$ is a hypergroup if for all $x \in H$, we have $x ° H = H ° x = H$.

A polygroup is a special case of a hypergroup. We now give the necessary definitions.

Definition 2.1. A polygroup is a system $P = < P, °, e, °^{-1} >$, where $e \in P, °^{-1}$ is a unitary operation on P, $°$ maps $P \times P$ into the non-empty subsets of P, and the following axioms hold for all x, y, z in P:

(i) $(x ° y) ° z = x ° (y ° z)$;

(ii) $e ° x = x ° e = x$;

(iii) $x \in y ° z$ implies $y \in x ° z^{-1}$ and $z \in y^{-1} ° x$.

The following elementary facts about polygroups follow easily from the axioms: $e \in x ° x^{-1} \cap x^{-1} ° x$, $e^{-1} = e$, $(x^{-1})^{-1} = x$, and $(x ° y)^{-1} = y^{-1} ° x^{-1}$.
where $A^{-1} = \{a^{-1} | a \in A\}$.

Example 1. Double coset algebra. Suppose that H is a subgroup of a group G. Define a system $G//H = <\{HgH \mid g \in G\}, \ast, H, ^{-1}>$, where $(HgH)^{-1} = Hg^{-1}H$ and

$(Hg_1H) \ast (Hg_2H) = \{Hg_1hg_2H \mid h \in H\}$.

The algebra of double cosets $G//H$ is a polygroup introduced in (Dresher and Ore [12]).

Example 2. Prenowitz algebras. Suppose G is a projective geometry with a set P of points and suppose, for $p \neq q$, pq denoted the set of all points on the unique line through p and q. Choose an object $I \notin P$ and form the system $P_G = <P \cup \{I\}, \cdot, I, ^{-1}>$ where $x^{-1} = x$ and $I \cdot x = x \cdot I = x$ for all $x \in P \cup \{I\}$ and for $p, q \in P$,

$$p \cdot q = \begin{cases} pq - \{p, q\} & \text{if } p \neq q \\ \{p, I\} & \text{if } p = q. \end{cases}$$

P_G is a polygroup (Prenowitz [15]).

Example 3. Conjugacy class polygroups. In dealing with a symmetry group two symmetric operations belong to the same class if they present the same map with respect to (possibly) different coordinate systems where one coordinate system is converted into the other by a member of the group. In the language of group theory this means the elements a, b in a symmetric group G belong to the same class if there exists a $g \in G$ such that $a = gb^{-1}$, i.e., a and b are conjugate. The collection of all conjugacy classes of a group G is denoted by \overline{G} and the system $<\overline{G}, \ast, \{e\}, ^{-1}>$ is a polygroup where e is the identity of G and the product $A \ast B$ of conjugacy classes A and B consists of all conjugacy classes contained in the elementwise product AB. This hypergroup was recognized by Campagne [2] and by Diatzman [11].

Now, we illustrate constructions using the dihedral group D_4. This group is generated by a counter-clockwise rotation r of 90° and a horizontal reflection h. The group consists of the following 8 symmetries:

$$\{1 = r^0, r, r^2 = s, r^3 = t, h, hr = d, hr^2 = v, hr^3 = f\}.$$
dihedral groups as a group of symmetry. In the case of D_4 there are five conjugacy classes: $\{1\}, \{s\}, \{r, t\}, \{d, f\}$ and $\{h, v\}$. Let us denote these classes by C_1, \ldots, C_5 respectively. Then the polygroup D_4 is

\[
\begin{array}{ccccc}
* & C_1 & C_2 & C_3 & C_4 & C_5 \\
C_1 & C_1 & C_2 & C_3 & C_4 & C_5 \\
C_2 & C_2 & C_1 & C_3 & C_4 & C_5 \\
C_3 & C_3 & C_1, C_2 & C_5 & C_4 & C_4 \\
C_4 & C_4 & C_3 & C_1, C_2, C_3 & C_3 & C_3 \\
C_5 & C_5 & C_4 & C_3, C_1, C_2 & C_1, C_2 & C_1, C_2 \\
\end{array}
\]

As a sample of how to calculate the table entries consider $C_3 \cdot C_3$. To determine this product compute the elementwise product of the conjugacy classes $\{r, t\}\{r, t\} = \{s, 1\} = C_1 \cup C_2$. Thus $C_3 \cdot C_3$ consists of the two conjugacy classes C_1, C_2 (see [3]).

For $a, b \in P$, we write the product of a, b by ab instead of $a \cdot b$.

Definition 2.2. A non-empty subset K of a polygroup P is said to be a subpolygroup of P if, under the hyperoperation in P, K itself forms a polygroup.

It would be useful to have some criterion for deciding whether a given subset of a polygroup is a subpolygroup. This is the purpose of the next lemma.

Lemma 2.3. A non-empty subset K of a polygroup P is a subpolygroup of P if and only if i) $a, b \in K$ implies $ab \subseteq K$; ii) $a \in K$ implies $a^{-1} \in K$.

Definition 2.4. The subpolygroup N of P is normal in P if and only if $a^{-1}Na \subseteq N$ for all $a \in P$.

The following corollaries are direct consequences of Definitions 2.1-2.4.

Corollary 2.5. Let N be a normal subpolygroup of P. Then

(i) $Na = aN$ for all $a \in P$;

(ii) $(Na)(Nb) = Nab$ for all $a, b \in P$;

(iii) $Na = Nb$ for all $b \in Na$.

Corollary 2.6. Let K and N be subpolygroups of a polygroup P with N normal in P. Then
(i) $N \cap K$ is a normal subpolygroup of K;

(ii) $NK = KN$ is a subpolygroup of P;

(iii) N is a normal subpolygroup of NK.

Definition 2.7. If N is a normal subpolygroup of P, then we define the relation $x \equiv y \pmod{N}$ if and only if $xy^{-1} \cap N \neq \emptyset$. This relation is denoted by $x N_P y$.

Lemma 2.8. The relation N_P is an equivalence relation.

Proof. (i) Since $e \in xx^{-1} \cap N$ for all $x \in P$, then $x N_P x$, i.e., N_P is reflexive.

(ii) Suppose that $x N_P y$. Then there exists $z \in xy^{-1} \cap N$ which implies $z^{-1} \in yx^{-1}$ and $z^{-1} \in N$, this means that $y N_P x$, and so N_P is symmetric.

(iii) Let $x N_P y$ and $y N_P z$ where $x, y, z \in P$. Then there exist $a \in xy^{-1} \cap N$ and $b \in yz^{-1} \cap N$. So $x \in ay$ and $z^{-1} \in y^{-1}b$, then $z^{-1}x \subseteq y^{-1}bay$. Since $ba \subseteq N$ and N is a normal subpolygroup, then $y^{-1}bay \subseteq N$. Therefore $z^{-1}x \cap N \neq \emptyset$, which satisfies the condition for $x N_P z$, and so N_P is transitive. □

Let $N_P(x)$ be the equivalence class of the element $x \in P$. Suppose that $[P : N] = \{N_P(x) \mid x \in P\}$. On $[P : N]$ we consider the hyperoperation \odot defined as follows: $N_P(x) \odot N_P(y) = \{N_P(z) \mid z \in N_P(x)N_P(y)\}$. For a subpolygroup K of P and $x \in P$, denote the right coset of K by Kx and let P/K is the set of all right cosets of K in P.

Lemma 2.9. Let N is a normal subpolygroup of P. Then $Nx = N_P(x)$.

Proof. Suppose that $y \in Nx$. Then there exists $n \in N$ such that $y \in nx$, which implies that $n \in yx^{-1}$, and so $yx^{-1} \cap N \neq \emptyset$. Thus $Nx \subseteq N_P(x)$. Similarly we have $N_P(x) \subseteq Nx$. □

Therefore we conclude that $[P : N] = P/N$.

Lemma 2.10. Let N be a normal subpolygroup of P. Then for all $x, y \in P$, $Nxy = Nz$ for all $z \in xy$.

Proof. Suppose that $z \in xy$. Then it is clear that $Nz \subseteq Nxy$. Now, let $a \in Nxy$. Then, by condition (iii) of Definition 2.1, we get $y \in (Nx)^{-1}a$ or $y \in x^{-1}Na$, and so $xy \subseteq xx^{-1}Na$. Since N is a normal subpolygroup, we obtain $xy \subseteq xNx^{-1}a \subseteq Na$. Therefore for every $z \in xy$, we have $z \in Na$ which implies $a \in Nz$. This complete the proof. □
Corollary 2.11. For all $x, y \in P$, we have $N_P(N_P(x)N_P(y)) = N_P(x)N_P(y)$.

Definition 2.12. (Comer [3]). An equivalence relation ρ on a polygroup P is called a conjugation on P if i) $x py$ implies $x^{-1}\rho y^{-1}$; ii) $z \in xy$ and $z' \rho z$ implies $z' \in x'y'$ for some $x' \rho x$ and $y' \rho y$.

Lemma 2.13. (Comer [3]). ρ is a conjugation of P if and only if

(i) $\rho(x)^{-1} = \{y^{-1} | y \in \rho(x)\} = \rho(x^{-1})$

(ii) $\rho(\rho(x)y) = \rho(x)\rho(y)$

Corollary 2.14. The equivalence relation N_P is a conjugation on P.

Proposition 2.15. $< [P : N], \circ, N_P(e), -I >$ is a polygroup, where $N_P(a)^{-I} = N_P(a^{-1})$.

Proof. For all $a, b, c \in P$, we have

\[(N_P(a) \circ N_P(b)) \circ N_P(c) = \{N_P(x) | x \in N_P(a)N_P(b)\} \circ N_P(c)\]

\[= \{N_P(y) | y \in N_P(x)N_P(c), x \in N_P(a)N_P(b)\}\]

\[= \{N_P(y) | y \in N_P(N_P(a)N_P(b))N_P(c)\}\]

\[= \{N_P(y) | y \in (N_P(a)N_P(b))N_P(c)\},\]

\[N_P(a) \circ (N_P(b) \circ N_P(c)) = N_P(a) \circ \{N_P(x) | x \in N_P(b)N_P(c)\}\]

\[= \{N_P(y) | y \in N_P(a)N_P(x), x \in N_P(b)N_P(c)\}\]

\[= \{N_P(y) | y \in N_P(a)N_P(N_P(b)N_P(c))\}\]

\[= \{N_P(y) | y \in N_P(a)(N_P(b)N_P(c))\} .\]

Since $(N_P(a)N_P(b))N_P(c) = N_P(a)(N_P(b)N_P(c))$, we get $(N_P(a) \circ N_P(b)) \circ N_P(c) = N_P(a) \circ (N_P(b) \circ N_P(c))$. Therefore, \circ is associative. It is easy to see that $N_P(e)$ is the unit element in $[P : N]$, and $N_P(x^{-1})$ is the inverse of the element $N_P(x)$. Now, we show that $N_P(c) \in N_P(a) \circ N_P(b)$ implies $N_P(a) \in N_P(c) \circ N_P(b^{-1})$ and $N_P(b) \in N_P(a^{-1}) \circ N_P(c)$.

We have $N_P(c) \in N_P(a) \circ N_P(b)$, and hence $N_P(c) = N_P(x)$ for some $x \in N_P(a)N_P(b)$. Therefore, there exist $y \in N_P(a)$ and $z \in N_P(b)$ such that $x \in yz$, so $y \in zx^{-1}$. This implies that $N_P(y) \in N_P(x) \circ N_P(z^{-1})$, and so $N_P(a) \in N_P(c) \circ N_P(b^{-1})$. Similarly, we get $N_P(b) \in N_P(a^{-1}) \circ N_P(c).$ Therefore $[P : N]$ is a polygroup. □

Corollary 2.16. If N is a normal subgroup of P, then $< P/N, \circ, N, -I >$ is a polygroup, where $Nx \circ Ny = \{Nz | z \in xy\}$ and $(Nx)^{-I} = Nx^{-1}$.

Definition 2.17. Let $< P_1, \cdot, e_1, -1 >$ and $< P_2, *, e_2, -1 >$ be polygroups. A
mapping \(\varphi \) from \(P_1 \) into \(P_2 \) is said to be a strong homomorphism if for all \(a, b \in P_1 \),

\[
\begin{align*}
\text{i)} & \quad \varphi(e_1) = e_2; \\
\text{ii)} & \quad \varphi(ab) = \varphi(a) \ast \varphi(b).
\end{align*}
\]

Clearly, a strong homomorphism \(\varphi \) is an isomorphism if \(\varphi \) is one to one and onto. We write \(P_1 \cong P_2 \) if \(P_1 \) is isomorphic to \(P_2 \).

Because \(P_1 \) is a polygroup, \(e \in aa^{-1} \) for all \(a \in P_1 \), then we have \(\varphi(e_1) \in \varphi(a) \ast \varphi(a^{-1}) \) or \(e_2 \in \varphi(a) \ast \varphi(a^{-1}) \) which implies \(\varphi(a^{-1}) \in \varphi(a)^{-1} \ast e_2 \), therefore \(\varphi(a^{-1}) = \varphi(a)^{-1} \) for all \(a \in P_1 \). Moreover, if \(\varphi \) is a strong homomorphism from \(P_1 \) into \(P_2 \), then the kernel of \(\varphi \) is the set \(\ker \varphi = \{ x \in P_1 \mid \varphi(x) = e_2 \} \). It is trivial that \(\ker \varphi \) is a subpolygroup of \(P_1 \) but in general is not normal in \(P_1 \).

Corollary 2.18. Let \(\varphi \) be a strong homomorphism from \(P_1 \) into \(P_2 \). Then \(\varphi \) is injective if and only if \(\ker \varphi = \{ e_1 \} \).

Proof. Let \(y, z \in P_1 \) be such that \(\varphi(y) = \varphi(z) \). Then \(\varphi(y) \ast \varphi(y^{-1}) = \varphi(z) \ast \varphi(y^{-1}) \). It follows that \(\varphi(e_1) \in \varphi(zy^{-1}) = \varphi(yz^{-1}) \), and so there exists \(x \in yz^{-1} \) such that \(e_2 = \varphi(e_1) = \varphi(x) \). Thus, if \(\ker \varphi = \{ e_1 \} \), \(x = e_1 \), whence \(y = z \). Now, let \(x \in \ker \varphi \). Then \(\varphi(x) = e_2 = \varphi(e_1) \). Thus, if \(\varphi \) is injective, we conclude that \(x = e_1 \). \(\square \)

We are now in a position to state and review the fundamental theorems in polygroup theory.

Theorem 2.19. (First Isomorphism Theorem). Let \(\varphi \) be a strong homomorphism from \(P_1 \) into \(P_2 \) with kernel \(K \) such that \(K \) is a normal subpolygroup of \(P_1 \). Then \(P_1/K \cong \text{Im} \varphi \).

Proof. We define \(\psi : P_1/K \longrightarrow \text{Im} \varphi \) by setting \(\psi(Kx) = \varphi(x) \) for all \(x \in P_1 \). It is easy to see that \(\psi \) is an isomorphism. \(\square \)

Theorem 2.20. (Second Isomorphism Theorem). If \(K \) and \(N \) are subpolygroups of a polygroup \(P \), with \(N \) normal in \(P \), then \(K/N \cap K \cong N/K \).

Proof. Since \(N \) is a normal subpolygroup of \(P \), \(NK = KN \). Consequently \(NK \) is a subpolygroup of \(P \). Further \(N = Ne \subseteq NK \) given that \(N \) is a normal subpolygroup of \(NK \); consequently \(NK/N \) is defined. Define \(\varphi : K \longrightarrow NK/N \) by \(\varphi(k) = Nk \). \(\varphi \) is a strong homomorphism. Consider any \(Na \in NK/N \), \(a \in NK \). Now, \(a \in NK \) given \(a = nk \) for some \(n \in N \), \(k \in K \). Thus,
Proof. We leave it to reader to verify that \(P/N \) morphism of \(P/N \) subpolygroups of a polygroup \(x \) we can define a hyperproduct as follows: \((P/N)\text{subpolygroup of}(\)\(Theorem 2.21. \) Third Isomorphism Theorem). If \(K \) and \(N \) are normal subpolygroups of a polygroup \(P \) such that \(N \subseteq K \), then \(K/N \) is a normal subpolygroup of \(P/N \) and \((P/N)/(K/N) \cong P/K.\)

Proof. We leave it to reader to verify that \(K/N \) is a normal subpolygroup of \(P/N. \) Further \(\varphi : P/N \rightarrow P/K \) defined by \(\varphi(Nx) = Kx \) is a strong homomorphism of \(P/N \) onto \(P/K \) such that \(\ker \varphi = K/N. \) □

Let \(<P_1, \ast, e_{1,-1}>\) and \(<P_2, \ast, e_{2,-1}>\) be two polygroups. Then on \(P_1 \times P_2 \) we can define a hyperproduct as follows: \((x_1, y_1) \circ (x_2, y_2) = \{(x, y) \mid x \in x_1x_2, y \in y_1 \ast y_2\}.\) We recall this the direct hyperproduct of \(P_1 \) and \(P_2.\) Clearly, \(P_1 \times P_2 \) equipped with the usual direct hyperproduct becomes a polygroup.

Corollary 2.22. If \(N_1, N_2 \) are normal subpolygroups of \(P_1, P_2 \) respectively, then \(N_1 \times N_2 \) is a normal subpolygroup of \(P_1 \times P_2 \) and \((P_1 \times P_2)/(N_1 \times N_2) \cong P_1/N_1 \times P_2/N_2.\)

Let \(P \) be a polygroup. We define the relation \(\beta^* \) as the smallest equivalence relation on \(P \) such that the quotient \(P/\beta^* \), the set of all equivalence classes, is a group. In this case \(\beta^* \) is called the fundamental equivalence relation on \(P \) and \(P/\beta^* \) is called the fundamental group. The product \(\circ \) in \(P/\beta^* \) is defined as follows: \(\beta^*(x) \circ \beta^*(y) = \beta^*(z) \) for all \(z \in \beta^*(x) \beta^*(y).\) This relation is studied by Corsini [6] concerning hypergroups, see also [16, 17]. Let \(\mathcal{U}_P \) be the set of all finite products of elements of \(P. \) We define the relation \(\beta \) as follows: \(x \beta y \) if and only if \(\{x, y\} \subseteq u \) for some \(u \in \mathcal{U}_P.\) We have \(\beta^* = \beta \) for hypergroups. Since polygroups are certain subclasses of hypergroups, we have \(\beta^* = \beta \) (Theorem 81, [6]). The kernel of the canonical map \(\varphi : P \rightarrow P/\beta^* \) is called the core of \(P \) and is denoted by \(\omega_P. \) Here we also denote by \(\omega_P \) the unit of \(P/\beta^*. \) It is easy to prove that the following statements: \(\omega_P = \beta^*(e) \) and \(\beta^*(x)^{-1} = \beta^*(x^{-1}) \) for all \(x \in P.\)

Theorem 2.23. (See Theorem 5.9, [9]). Let \(\beta^*_1, \beta^*_2 \) be fundamental equivalence relations on polygroups \(P_1, P_2 \) and \(P_1 \times P_2 \) respectively, then \((P_1 \times P_2)/\beta^* \cong P_1/\beta^*_1 \times P_2/\beta^*_2.\)
Corollary 2.24. If N_1, N_2 are normal subpolygroups of P_1, P_2 respectively, and β_1^*, β_2^* and β^* fundamental equivalence relations on $P_1/N_1, P_2/N_2$ and $(P_1 \times P_2)/(N_1 \times N_2)$ respectively, then

$$((P_1 \times P_2)/(N_1 \times N_2))/\beta^* \cong (P_1/N_1)/\beta_1^* \times (P_2/N_2)/\beta_2^*.$$

Definition 2.25. Let f be a strong homomorphism from P_1 into P_2 and let β_1^*, β_2^* be fundamental relations on P_1, P_2 respectively. Then we define

$$\overline{\ker f} = \{ \beta_1^*(x) \mid x \in P_1, \beta_2^*(f(x)) = \omega_{P_2} \}.$$

Lemma 2.26. $\overline{\ker f}$ is a normal subgroup of the fundamental group P_1/β_1^*.

Proof. Assume that $\beta_1^*(x), \beta_1^*(y) \in \overline{\ker f}$ then for every $z \in xy^{-1}$ we have $\beta_1^*(z) = \beta_1^*(x) \otimes \beta_1^*(y^{-1})$. On the other hand, we have

$$\beta_2^*(f(z)) = \beta_2^*(f(x)f(y^{-1})) = \beta_2^*(f(x)) \otimes \beta_2^*(f(y^{-1})) = \omega_{P_2} \otimes \omega_{P_2} = \omega_{P_2}.$$

Therefore $\beta_1^*(z) \in \overline{\ker f}$. Now, let $\beta_1^*(a) \in P_1/\beta_1^*$ and $\beta_1^*(x) \in \overline{\ker f}$ then for every $z \in axa^{-1}$ we have $\beta_1^*(z) = \beta_1^*(a) \otimes \beta_1^*(x) \otimes \beta_1^*(a^{-1})$. On the other hand, we have

$$\beta_2^*(f(z)) = \beta_2^*(f(a)f(x)f(a^{-1})) = \beta_2^*(f(a)) \otimes \beta_2^*(f(x)) \otimes \beta_2^*(f(a^{-1})) = \beta_2^*(f(aa^{-1})) = \beta_2^*(f(e_1)) = \beta_2^*(e_2) = \omega_{P_2}.$$

Hence, we get $\beta_1^*(z) \in \overline{\ker f}$. This completes the proof. \hfill \Box

Theorem 2.27. Let P be a polygroup, M, N two normal subpolygroups of P with $N \subseteq M$ and $\phi : P/N \longrightarrow P/M$ canonical map. Suppose that β_M^*, β_N^* are the fundamental equivalence relations on $P/M, P/N$, respectively. Then

$$((P/N)/\beta_N^*)/\overline{\ker \phi} \cong (P/M)/\beta_M^*.$$

Proof. We define the map $\psi : (P/N)/\beta_N^* \longrightarrow (P/M)/\beta_M^*$ by $\psi : \beta_N^*(Nz) \longrightarrow \beta_M^*(Mz)$ (for all $x \in P$). We must check that ψ is well-defined, that is, that if $x, y \in P$ and $\beta_N^*(Nx) = \beta_N^*(Ny)$ then $\beta_M^*(Mx) = \beta_M^*(My)$. Now $\beta_N^*(Nx) = \beta_N^*(Ny)$ if and only if $\{Nx, Ny\} \subseteq u$ for some $u \in U_{P/N}$. By Lemma 2.10 and Corollary 2.16, we have $u = Nx_1 \circ Nx_2 \circ \ldots \circ Nx_n = \{Nz \mid z \in \prod_{i=1}^{n} x_i\}$.

9
Therefore for some \(z_1 \in \prod_{i=1}^{n} x_i \), \(z_2 \in \prod_{i=1}^{n} x_i \) we have \(Nx = Nz_1 \) and \(Ny = Nz_2 \). So there exist \(a \in xz_1^{-1} \cap N \) and \(b \in yz_2^{-1} \cap N \), then \(x \in az_1 \) and \(y \in bz_2 \). Hence \(Mx \in Ma \circ Mz_1 \) and \(My \in Mb \circ Mz_2 \). Since \(a, b \in N \subseteq M \), then \(Ma = M, Mb = M \). Since \(M \circ Mz_1 = Mz_1 \) and \(M \circ Mz_2 = Mz_2 \), we have \(Mx = Mz_1 \) and \(My = Mz_2 \). From \(\{Mz_1, Mz_2\} \subseteq \{Mz \mid z \in \prod_{i=1}^{n} x_i\} \), we get \(\{Mx, My\} \subseteq \{Mz \mid z \in \prod_{i=1}^{n} x_i\} = Mx_1 \circ Mx_2 \circ \ldots \circ Mx_n \). Therefore, \(\beta_M^*(Mx) = \beta_M^*(My) \). This follows that \(\psi \) is well-defined. Moreover, \(\psi \) is a strong homomorphism, for if \(x, y \in P_1 \) then

\[
\psi(\beta_N^*(Nx) \otimes \beta_N^*(Ny)) = \psi(\beta_N^*(Nxy)) = \beta_M^*(Mxy) = \beta_M^*(Mx) \otimes \beta_M^*(My) = \psi(\beta_N^*(Nx)) \otimes \psi(\beta_M^*(My)),
\]

and \(\psi(\omega_{P/N}) = \psi(\beta_N^*(N)) = \beta_M^*(M) = \omega_{P/M} \). Clearly, \(\psi \) is onto. Now, we show that \(\ker \psi = \ker \phi \). We have

\[
\ker \psi = \{\beta_N^*(Nx) \mid \psi(\beta_N^*(Nx)) = \omega_{P/N}\} = \{\beta_N^*(Nx) \mid \beta_M^*(Mx) = \omega_{P/N}\} = \{\beta_N^*(Nx) \mid \beta_M^*(\phi(Nx)) = \omega_{P/N}\} = \ker \phi. \quad \square
\]

References

