Approximation of Common Fixed Points of Family of Asymptotically Nonexpansive Mappings

1Eric U. Ofoedu, 2Habtu Zegeye and 3Naseer Shahzad
1Department of Mathematics, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Anambra State, Nigeria
2Department of Mathematics, University of Botswana, Pvt. Bag 00704 Gaborone, Botswana
3Department of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
1euofoedu@yahoo.com, 2habtuzh@yahoo.com, 3nshahzad@kau.edu.sa

Abstract. In this paper, we introduce a new iteration process for approximation of common fixed point of countably infinite family of nonself asymptotically nonexpansive mappings in uniformly convex Banach spaces, and prove weak and strong convergence of our iteration process to a common fixed point of these operators. Our theorems extend, generalize and unify many recently announced results. Our iteration process, corollaries and methods of proof are of independent interest.

2010 Mathematics Subject Classification: 47H05, 47J05, 47J25

Keywords and phrases: Demiclosedness principle, infinite family of asymptotically non-expansive nonself-mapping, modulus of convexity, modified W-mapping.

1. Introduction

Let K be a nonempty subset of a real normed linear space E. A self-mapping $T : K \to K$ is called asymptotically nonexpansive if there exists a sequence $\{\mu_n\}_{n \geq 1} \subset [1, \infty)$, $\lim_{n \to \infty} \mu_n = 1$ such that for all $x, y \in K$

$$\|T^n x - T^n y\| \leq \mu_n \|x - y\|,$$

for all $n \in \mathbb{N}$.

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [10] as an important generalization of the class of nonexpansive mappings, where a self mapping $T : K \to K$ is said to be nonexpansive if

$$\|Tx - Ty\| \leq \|x - y\|,$$

for all $x, y \in K$.

Goebel and Kirk [10] proved that if K is a nonempty bounded closed convex subset of a real uniformly convex Banach space and T is self asymptotically nonexpansive mapping of K, then T has a fixed point.

Iterative methods for approximating fixed points of self asymptotically nonexpansive mappings have been studied by various authors using the Mann iteration scheme (see e.g., [15]) or the Ishikawa iteration scheme (see e.g., [11]).
Bose [3], proved that if K is a bounded closed convex nonempty subset of a uniformly convex Banach space E satisfying Opial’s condition (that is, for all sequences $\{x_n\}_{n \geq 1}$ in E such that $\{x_n\}_{n \geq 1}$ converges weakly to some $x \in E$, the inequality $\lim\inf_{n \to \infty} \|x_n - y\| > \lim\inf_{n \to \infty} \|x_n - x\|$ holds for all $y \neq x$; (see e.g., [18]) and $T : K \to K$ is an asymptotically nonexpansive mapping, then the sequence $\{T^n x\}_{n \geq 1}$ converges weakly to a fixed point of T provided that T is asymptotically regular at $x \in K$, that is, $\lim_{n \to \infty} \|T^n x - T^{n+1} x\| = 0$.

Pasty [21] and also Xu [37] proved that the requirement that E satisfies Opial’s condition can be replaced by the condition that E has a Fréchet differentiable norm (that is, for all $x \in U := \{x \in E : \|x\| = 1\}$, $\lim_{t \to 0} (\|tx + y\| - \|x\|)/t$ exists and is attained uniformly in $y \in U$).

Furthermore, Tan and Xu [33, 34] later proved that the asymptotic regularity of T at x can be weakened to the weak asymptotic regularity of T at x, that is, $w - \lim_{n \to \infty}(T^n x - T^{n+1} x) = 0$.

In [23, 24], Schu introduced a modified Mann iteration process to approximate fixed points of self asymptotically nonexpansive mappings. More precisely, he proved the following theorems:

Theorem 1.1. [23, Theorem 1.5, p. 409] Let H be a Hilbert space, K a bounded closed convex and nonempty subset of H. Let $T : K \to K$ be a completely continuous asymptotically nonexpansive mapping with sequence $\{\mu_n\}_{n \geq 1} \subset [1, +\infty)$; $\lim_{n \to \infty} \mu_n = 1$, and $\sum_{n=1}^{\infty} (\mu_n^2 - 1) < \infty$. Let $\{\alpha_n\}_{n \geq 1}$ be a real sequence in $[0, 1]$ satisfying the condition $\alpha_n \leq 1 - \varepsilon$ for all $n \geq 1$ and for some $\varepsilon > 0$. Then, the sequence $\{x_n\}$ generated from arbitrary $x_1 \in K$ by $x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n x_n$, $n \geq 1$, converges strongly to some fixed point of T.

Theorem 1.2. [24, Theorem 2.1, p.156] Let E be a uniformly convex Banach space satisfying Opial’s condition and let K be a bounded closed convex and nonempty subset of E. Let $T : K \to K$ be an asymptotically nonexpansive mapping with sequence $\{\mu_n\}_{n \geq 1} \subset [1, +\infty)\), $\lim_{n \to \infty} \mu_n = 1$, and $\sum_{n=1}^{\infty} (\mu_n^2 - 1) < \infty$. Let $\{\alpha_n\}_{n \geq 1}$ be a real sequence in $[0, 1]$ satisfying the condition $0 < a \leq \alpha_n \leq b < 1$, for all $n \geq 1$, for some constants a, b. Then, the sequence $\{x_n\}$ generated from arbitrary $x_1 \in K$ by $x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n x_n$, $n \geq 1$, converges weakly to some fixed point of T.

In [22], Rhoades extended Theorem 1.1 to uniformly convex Banach space using a modified Ishikawa iteration method. Osilike and Aniagbosor [19], proved that the theorems of Schu and Rhoades remain true without the boundedness condition imposed on K, provided that $F(T) = \{x \in K : Tx = x\} \neq \emptyset$.

Existence theorems for common fixed points of certain families of nonlinear mappings have been established by various authors (see e.g., [2, 4, 5, 13, 14]).

Within the past 30 years or so, research on iterative approximation of common fixed points of families of nonexpansive mappings and generalizations of nonlinear nonexpansive mappings surged. Considerable research efforts have been devoted to developing iterative methods for approximating common fixed points (when they exist) of finite families of these class of mappings (see e.g., [1, 6, 9, 12, 17, 26, 28, 29] and references therein).

Using an Ishikawa-type scheme [11], Takahashi and Tan [32] proved strong and weak convergence of a sequence defined by

\[x_{n+1} = \alpha_n S(\beta_n T x_n + (1 - \beta_n) x_n) + (1 - \alpha_n) x_n \]

(1.3)

to a common fixed point of a pair of nonexpansive mappings T and S. In [25], Shahzad and Udomene established necessary and sufficient conditions for convergence of Ishikawa-type iteration sequences involving two asymptotically quasi-nonexpansive mappings to a
common fixed point of the mappings in arbitrary real Banach spaces. They also established a sufficient condition for the convergence of the Ishikawa-type iteration sequences involving two uniformly continuous asymptotically quasi-nonexpansive mappings to a common fixed point of the mappings in real uniformly convex Banach spaces.

Let K be a nonempty closed convex subset of a Hilbert space H and let $\{T_n\}_{n \geq 1}$ be countably infinite family of asymptotically nonexpansive mappings of K into itself and let $\{\beta_{n,j} : n, j \in \mathbb{N}, 1 \leq j \leq n\}$ be a sequence of real numbers such that $0 \leq \beta_{n,j} \leq 1$ for $n, j \in \mathbb{N}$ with $n \geq j$. Motivated by the W-mapping introduced in [27, 30, 31] for nonexpansive mappings, Nakajo et al. [16] introduced (for each $n \in \mathbb{N}$) the following mapping of K into itself:

$$
U_{n,n} = \beta_{n,n} T^n_n + (1 - \beta_{n,n}) I,
$$

$$
U_{n,n-1} = \beta_{n,n-1} T^n_{n-1} U_{n,n} + (1 - \beta_{n,n-1}) I,
$$

$$
\vdots
$$

$$
U_{n,j} = \beta_{n,j} T^n_j U_{n,j+1} + (1 - \beta_{n,j}) I,
$$

$$
\vdots
$$

$$
U_{n,2} = \beta_{n,2} T^n_2 U_{n,3} + (1 - \beta_{n,2}) I,
$$

$$
W_n = U_{n,1} = \beta_{n,1} T^n_1 U_{n,2} + (1 - \beta_{n,1}) I.
$$

(1.4)

Such a mapping W_n is called the modified W-mapping generated by $T_n, T_{n-1}, \ldots, T_2, T_1$ and $\beta_{n,n}, \beta_{n,n-1}, \ldots, \beta_{n,2}, \beta_{n,1}$.

Very recently, Nakajo et al. [16] obtained strong convergence theorem for approximation of common fixed point of countably infinite family of asymptotically nonexpansive self-mappings in the frame work of Hilbert spaces by the so called hybrid method using the modified W-mapping.

In all the above results, the operator T remains a self-mapping of a nonempty closed convex subset K of either Hilbert space or uniformly convex Banach space. If, however, the domain, $D(T)$, of T is a proper subset of E and T maps $D(T)$ into E (which is the case in several applications), then the iteration processes studied by these authors, and their modifications may fail to be well defined.

In [8], Chidume, Ofoedu and Zegeye introduced the class of nonself asymptotically nonexpansive mappings.

A subset K of E is said to be a retract of E if there exists a continuous map $P : E \to K$ such that $Px = x$ for all $x \in K$. Every closed convex nonempty subset of a uniformly convex Banach space is a retract. A map $P : E \to E$ is said to be a retraction if $P^2 = P$. It follows that if a map P is a retraction, then $Py = y$ for all y in the range of P.

The following definition was given in [8].

Definition 1.1. Let E be a real normed linear space, K a nonempty subset of E. Let $P : E \to K$ be the nonexpansive retraction of E onto K. A nonself map $T : K \to E$ is said to be asymptotically nonexpansive if there exists a sequence $\{\mu_n\}_{n \geq 1} \subset [1, +\infty)$, $\mu_n \to 1$ as $n \to \infty$, such that the following inequality holds:

$$
\|T(PT)^{n-1} x - T(PT)^{n-1} y\| \leq \mu_n \|x - y\|, \quad \forall x, y \in K, \ n \in \mathbb{N}.
$$

(1.5)
The operator T is called uniformly L-Lipschitzian if there exists $L > 0$ such that

\begin{equation}
\|T(PT)^{n-1}x - T(PT)^{n-1}y\| \leq L\|x - y\|, \quad \forall x, y \in K, \, n \in \mathbb{N}.
\end{equation}

Let K be a closed convex nonempty subset of a real uniformly convex Banach space E, the following iteration scheme was introduced and studied in [8]:

\begin{equation}
x_{1} \in K, \quad x_{n+1} = P\left((1 - \alpha_{n})x_{n} + \alpha_{n}T(PT)^{n-1}x_{n}\right), \quad n \geq 1,
\end{equation}

where $\{\alpha_{n}\}_{n \geq 1}$ is a sequence in $(0, 1)$ satisfying appropriate conditions.

Observe that if T is a self-mapping, the operator P becomes identity mapping so that (1.5) coincides with (1.1). Moreover, (1.7) reduces to a Mann-type iteration scheme.

Wang [36] used a scheme similar to (1.3) and the definition of Chidume et al. [8] to prove strong and weak convergence theorems for a pair of nonself asymptotically nonexpansive mappings. More precisely, he proved the following theorems.

Theorem 1.3. [36] Let K be a nonempty closed convex subset of uniformly convex Banach space E. Suppose $T_{1}, T_{2} : K \to E$ are two nonself asymptotically nonexpansive mappings with sequences $\{\mu_{n}\}_{n \geq 1}$ and $\{l_{n}\}_{n \geq 1} \subset [1, +\infty)$ such that $\sum_{n=1}^{\infty}(\mu_{n} - 1) < \infty$, $\sum_{n=1}^{\infty}(l_{n} - 1) < \infty$. Let $\{x_{n}\}_{n \geq 1}$ be generated by

\begin{equation}
\begin{cases}
x_{1} \in K, \\
x_{n+1} = P\left((1 - \alpha_{n})x_{n} + \alpha_{n}T_{1}(PT_{1})^{n-1}y_{n}\right) \\
y_{n} = P\left((1 - \beta_{n})x_{n} + \beta_{n}T_{2}(PT_{2})^{n-1}x_{n}\right), \quad n \geq 1,
\end{cases}
\end{equation}

where $\{\alpha_{n}\}$ and $\{\beta_{n}\}$ are sequences in $[\varepsilon, 1 - \varepsilon]$ for some $\varepsilon \in (0, 1)$. If one of T_{1} and T_{2} is completely continuous, and $F(T_{1}) \cap F(T_{2}) \neq \emptyset$, then $\{x_{n}\}$ converges strongly to a common fixed point of T_{1} and T_{2}.

Theorem 1.4. [36] Let K, T_{1}, T_{2}, $\{\mu_{n}\}$, $\{l_{n}\}$ and $\{x_{n}\}$ be as in Theorem 1.3. If one of T_{1} and T_{2} is semicompact, and $F(T_{1}) \cap F(T_{2}) \neq \emptyset$, then $\{x_{n}\}$ converges strongly to a common fixed point of T_{1} and T_{2}.

Theorem 1.5. [36] Let K, T_{1}, T_{2}, $\{\mu_{n}\}$, $\{l_{n}\}$ and $\{x_{n}\}$ be as in Theorem 1.3. If E satisfies Opial condition, and $F(T_{1}) \cap F(T_{2}) \neq \emptyset$, then $\{x_{n}\}$ converges weakly to a common fixed point of T_{1} and T_{2}.

It is our aim in this paper to introduce a new iteration process for approximation of a common fixed point of countably infinite family of nonself asymptotically nonexpansive mappings in uniformly convex Banach spaces; and prove weak and strong convergence of our iteration process to a common fixed point of these mappings. Our theorems extend, generalize and unify many recently announced results, especially those of the authors mentioned above. Our iteration process, corollaries and methods of proof are of independent interest.

2. Preliminaries

Let E be a real normed linear space. The modulus of convexity of E is the function $\delta_{E} : (0, 2] \to [0, 1]$ defined by

\begin{equation}
\delta_{E}(\varepsilon) = \inf \left\{1 - \frac{\|x + y\|}{2} : \|x\| = \|y\| = 1, \quad \varepsilon = \|x - y\| \right\}.
\end{equation}
The space E is called uniformly convex if and only if $\delta_E(\varepsilon) > 0$ for all $\varepsilon \in (0, 2]$.

A mapping T with domain $D(T)$ and range $R(T)$ in E is said to be demiclosed at p if whenever $\{x_n\}$ is a sequence in $D(T)$ such that $x_n \to x \in D(T)$ and $Tx_n \to p$ then $Tx = p$.

A mapping $T : D(T) \subseteq E \to E$ is said to be semicompact if, for any bounded sequence $\{x_n\}_{n \geq 1}$ in $D(T)$ such that $\|x_n - Tx_n\| \to 0$ as $n \to \infty$, there exists a subsequence $\{x_{n_k}\}_{k \geq 1}$ of $\{x_n\}_{n \geq 1}$ such that $\{x_{n_k}\}_{k \geq 1}$ converges strongly to some $x^* \in D(T)$.

An operator T is said to be completely continuous if for every bounded sequence $\{x_n\}_{n \geq 1}$ in the domain, $D(T)$, of T, there exists a subsequence $\{x_{n_j}\}_{j \geq 1}$ of $\{x_n\}_{n \geq 1}$ such that the sequence $\{Tx_{n_j}\}_{j \geq 1}$ converges to some element of the range, $R(T)$, of T.

In the sequel, we shall make use of the following lemmas.

Lemma 2.1. (see e.g., [35]) Let $\{\lambda_n\}_{n \geq 1}$ and $\{\sigma_n\}_{n \geq 1}$ be a sequence of nonnegative real numbers such that $\lambda_{n+1} \leq \lambda_n + \sigma_n$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} \sigma_n < \infty$; then $\lim_{n \to \infty} \lambda_n$ exists. Moreover, if there exists a subsequence $\{\lambda_{n_j}\}_{j \geq 1}$ of $\{\lambda_n\}_{n \geq 1}$ such that $\lambda_{n_j} \to 0$ as $j \to \infty$, then $\lambda_n \to 0$ as $n \to \infty$.

Lemma 2.2. (see e.g., [37]) Let E be a real uniformly convex Banach space. Let $r > 0$, then there exists a continuous strictly increasing function $g : [0, +\infty) \to [0, +\infty)$, $g(0) = 0$ such that for all $x, y \in B_r(0)$, the following inequalities hold:

\[
\|\alpha x + (1 - \alpha)y\|^2 \leq \alpha\|x\|^2 + (1 - \alpha)\|y\|^2 - \alpha(1 - \alpha)g(\|x - y\|).
\]

Lemma 2.3. (8, Theorem 3.4, Demiclosedness principle for nonself-maps). Let E be a uniformly convex Banach space, K a nonempty closed convex nonexpansive retract of E, and let $T : K \to E$ be a nonself asymptotically nonexpansive mapping with a sequence $\{\mu_n\}_{n \geq 1} \subset [1, +\infty)$ and $\mu_n \to 1$ as $n \to \infty$. Then $I - T$ is demiclosed at zero.

3. Main results

In this section, we give new definitions and prove our main theorems. We start as follows:

Let K be a nonempty closed convex nonexpansive retract of a real normed linear space E with P as nonexpansive retraction. Let $T_m : K \to E$, $m = 1, 2, \ldots$ be a countably infinite family of nonself asymptotically nonexpansive mappings and $\{\beta_{m,n}\}_{n,m \in \mathbb{N}} \subset (0, 1)$. Then, for the family $\{T_m\}_{m \geq 1}$, the modified W-mapping generated by $T_n, T_{n-1}, \ldots, T_2, T_1$ and $\beta_{n,n}, \beta_{n,n-1}, \ldots, \beta_{2,1}, \beta_{1,1}$ for all $n \in \mathbb{N}$ is given by

\[
\begin{align*}
U_{n,n} &= P\left(\beta_{n,n}T_n(PT_n)^{n-1} + (1 - \beta_{n,n})I\right), \\
U_{n,n-1} &= P\left(\beta_{n,n-1}T_{n-1}(PT_{n-1})^{n-1}U_{n,n} + (1 - \beta_{n,n-1})I\right), \\
&\vdots \\
U_{n,j} &= P\left(\beta_{n,j}T_j(PT_j)^{n-1}U_{n,j+1} + (1 - \beta_{n,j})I\right), \\
&\vdots \\
U_{n,2} &= P\left(\beta_{n,2}T_2(PT_2)^{n-1}U_{n,3} + (1 - \beta_{n,2})I\right), \\
W_{n} &= U_{n,1} = P\left(\beta_{n,1}T_1(PT_1)^{n-1}U_{n,2} + (1 - \beta_{n,1})I\right).
\end{align*}
\]

Observe that in the case of self mappings, P becomes the identity map so that in this case, (1.4) and (3.1) coincide.
Lemma 3.1. Let K be a nonempty closed convex nonexpansive retract of a uniformly convex real Banach space E with P as a nonexpansive retraction. Let $\{T_m\}_{m \geq 1}$ be a countably infinite family of nonself asymptotically nonexpansive mappings of K into E with sequence $\{\mu_{m,n}\} \subset [1, +\infty)$, $\lim_{n \to \infty} \mu_{m,n} = 1$ such that $F = \cap_{m=1}^{\infty} T_m$ is not empty and $\{\beta_{n,j} : n, j \in \mathbb{N}, 1 \leq j \leq n\}$ be a sequence of real numbers such that $0 < \varepsilon \leq \beta_{n,j} \leq (1 - \varepsilon) < 1$, for some $\varepsilon \in (0, 1)$. Let W_n be the modified W-mapping generated by $T_1, T_2, T_3, \ldots, T_n$ and $\beta_{n,1}, \beta_{n,2}, \ldots, \beta_{n,n}$ as in (3.1). Let

$$\gamma_{n,j} = \beta_{n,j}(\mu_{j,n}^2 - 1) + \beta_{n,j} \beta_{n,j+1} \mu_{j,n}^2 (\mu_{j+1,n}^2 - 1)$$

and

$$\gamma_n = \sum_{j=1}^{n} \gamma_{n,j}$$

for all $n \in \mathbb{N}$ and $j = 1, 2, \ldots, n$. Then, the following hold:

1. $\|W_n x - W_n y\|^2 \leq (1 + \gamma_n) \|x - y\|^2$ for all $n \in \mathbb{N}$, $x, y \in K$;

2. If $\lim_{n \to \infty} \gamma_n = 0$, then for every bounded sequence $\{z_n\}$ in K such that

$$\lim_{n \to \infty} \|z_{n+1} - z_n\| = 0 = \lim_{n \to \infty} \|W_n z_n - z_n\|,$$

we have $\lim_{n \to \infty} \|z_n - T_n(P_{m,n})\| = 0 = \lim_{n \to \infty} \|z_n - T_m z_n\|$ for all $m \in \mathbb{N}$; moreover, we have $\omega_{0}(x_n) \subset F$;

3. If $\lim_{n \to \infty} \gamma_n = 0$, then $F = \cap_{m=1}^{\infty} F(W_n)$.

Proof. (1) For $x, y \in K$, we obtain from (3.1) that

$$\|U_{n,n} x - U_{n,n} y\|^2 \leq \beta_{n,n} \|T_n(P_{m,n})\| \|x - T_n(P_{m,n}) y\|^2 + (1 - \beta_{n,n}) \|x - y\|^2$$

$$\leq \beta_{n,n} \mu_{n,n}^2 \|x - y\|^2 + (1 - \beta_{n,n}) \|x - y\|^2$$

which implies that

$$\|U_{n,n} x - U_{n,n-1} y\|^2$$

$$\leq \beta_{n,n-1} \mu_{n-1,n}^2 \|U_{n,n} x - U_{n,n-1} y\|^2 + (1 - \beta_{n,n-1}) \|x - y\|^2$$

$$\leq \beta_{n,n-1} \mu_{n-1,n}^2 (\|x - y\|^2 + \beta_{n,n} \mu_{n,n-1}^2 \|x - y\|^2) + (1 - \beta_{n,n-1}) \|x - y\|^2$$

$$= \|x - y\|^2 (1 + \gamma_{n-1}) + \beta_{n,n-1} \beta_{n,n} \mu_{n,n-1} \mu_{n,n-1}^2 \|x - y\|^2$$

Continuing in this fashion, we get

$$\|U_{n,k} x - U_{n,k} y\|^2 \leq \|x - y\|^2 + (\beta_{n,k} \mu_{k,n}^2 - 1) + \beta_{n,k} \beta_{n,k+1} \mu_{k,n}^2 \mu_{k+1,n}^2 (\mu_{k+1,n}^2 - 1)$$

$$+ \beta_{n,k} \beta_{n,k+1} \mu_{k,n}^2 \mu_{k+1,n}^2 \mu_{k+1,n}^2 (\mu_{k+1,n}^2 - 1)$$

$$= (1 + \gamma_{n,k}) \|x - y\|^2$$

for $k = 1, 2, \ldots, n$. In particular, for $k = 1$, we have that

$$\|W_n x - W_n y\|^2 \leq (1 + \gamma_n) \|x - y\|^2$$

(2) Let $\{z_n\}_{n \geq 1}$ be a bounded sequence in K such that

$$\lim_{n \to \infty} \|z_{n+1} - z_n\| = 0 = \lim_{n \to \infty} \|W_n z_n - z_n\|.$$
Then, for $x^* \in F$, we have (using Lemma 2.2) that
\[
\|\mathbf{W}_n z_n - x^*\|^2 = \| P(\beta_{n,1}T_1(P_1)^{n-1}U_n,2z_n + (1 - \beta_{n,1})z_n) - Fx^* \|^2 \\
\leq \|(\beta_{n,1}T_1(P_1)^{n-1}U_n,2z_n + (1 - \beta_{n,1})z_n) - x^*\|^2 \\
\leq \beta_{n,1}\|T_1(P_1)^{n-1}U_n,2z_n - x^*\|^2 + (1 - \beta_{n,1})\|z_n - x^*\|^2 \\
- \beta_{n,1}(1 - \beta_{n,1})g(\|T_1(P_1)^{n-1}U_n,2z_n - z_n\|) \\
\leq (1 + \gamma_{n,1})\|z_n - x^*\|^2 - \epsilon^2 g(\|T_1(P_1)^{n-1}U_n,2z_n - z_n\|).
\]

Thus, from this inequality and the hypothesis, we get that
\[
\epsilon^2 g(\|T_1(P_1)^{n-1}U_n,2z_n - z_n\|) \\
\leq \|z_n - x^*\|^2 - \|\mathbf{W}_n z_n - x^*\|^2 + \gamma_{n,1}\|z_n - x^*\|^2 \\
= (\|z_n - x^*\| - \|\mathbf{W}_n z_n - x^*\|)(\|z_n - x^*\| + \|\mathbf{W}_n z_n - x^*\|) + \gamma_{n,1}\|z_n - x^*\|^2 \\
\leq (\|z_n - \mathbf{W}_n z_n\| + \gamma_{n,1})M_0 \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty
\]
for some $M_0 > 0$. Thus, by the properties of g, we obtain that
\[
\lim_{n \rightarrow \infty} \|T_1(P_1)^{n-1}U_n,2z_n - z_n\| = 0.
\]

Moreover,
\[
\|z_n - x^*\|^2 \leq (\|z_n - T_1(P_1)^{n-1}U_n,2z_n\| + \|T_1(P_1)^{n-1}U_n,2z_n - x^*\|)^2 \\
= \|z_n - T_1(P_1)^{n-1}U_n,2z_n\|^2 + \|T_1(P_1)^{n-1}U_n,2z_n - x^*\|^2 + 2\|T_1(P_1)^{n-1}U_n,2z_n - x^*\| \|z_n - T_1(P_1)^{n-1}U_n,2z_n\| \\
\leq \|z_n - T_1(P_1)^{n-1}U_n,2z_n\|^2 \|M_1 + \mu_{1,n}\|U_n,2z_n - x^*\|^2 \quad \text{(for some $M_1 > 0$)} \\
\leq \|z_n - T_1(P_1)^{n-1}U_n,2z_n\|^2 \|M_1 + \mu_{1,n}\|U_n,2z_n - x^*\|^2 + (1 - \beta_{n,2})\|z_n - x^*\|^2 - \beta_{n,2}(1 - \beta_{n,2})g(\|T_2(P_2)^{n-1}U_n,3z_n - z_n\|) \\
\leq \|z_n - T_1(P_1)^{n-1}U_n,2z_n\|^2 \|M_1 + \mu_{1,n}\|U_n,2z_n - x^*\|^2 + (1 - \beta_{n,2})\|z_n - x^*\|^2 - \beta_{n,2}(1 - \beta_{n,2})g(\|T_2(P_2)^{n-1}U_n,3z_n - z_n\|) \\
\leq \|z_n - T_1(P_1)^{n-1}U_n,2z_n\|^2 \|M_1 + \mu_{1,n}\|U_n,2z_n - x^*\|^2 + (1 - \beta_{n,2})\|z_n - x^*\|^2 - \epsilon^2 g(\|T_2(P_2)^{n-1}U_n,3z_n - z_n\|).
\]

Thus, we obtain from this inequality that
\[
g(\|T_2(P_2)^{n-1}U_n,3z_n - z_n\|) \\
\leq \frac{1}{\mu_{1,n}^2}\{\|z_n - T_1(P_1)^{n-1}U_n,2z_n\|M_1 + \mu_{1,n}^2\|\mathbf{W}_n z_n - x^*\|^2 \|z_n - x^*\|^2 + (1 - \beta_{n,2})\|z_n - x^*\|^2 - \|z_n - x^*\|^2 \} \\
\leq \frac{1}{\mu_{1,n}^2}\{\|z_n - T_1(P_1)^{n-1}U_n,2z_n\|M_1 + \mu_{1,n}^2\|\mathbf{W}_n z_n - x^*\|^2 \|z_n - x^*\|^2 + (1 - \beta_{n,2})\|z_n - x^*\|^2 - \|z_n - x^*\|^2 \} \\
\times (1 - \beta_{n,2})\|z_n - x^*\|^2 + (1 - \beta_{n,2})\|z_n - x^*\|^2 - \|z_n - x^*\|^2 \} \\
\times (1 - \beta_{n,2})\|z_n - x^*\|^2 + (1 - \beta_{n,2})\|z_n - x^*\|^2 - \|z_n - x^*\|^2 \}
\]
\[
\begin{align*}
\frac{1}{\mu_{1,n}^2} & \left\{ \|z_n - T_1(PT_1)^{n-1}U_{n,2}z_n\| M_1 \\
+ \mu_{1,n}^2 \mu_{2,n}^2 (1 + \gamma_{n,3}) \|z_n - x^*\|^2 - \|z_n - x^*\|^2 \right\} \\
\leq & \frac{1}{\mu_{1,n}^2} \left\{ \|z_n - T_1(PT_1)^{n-1}U_{n,2}z_n\| + (\mu_{1,n}^2 \mu_{2,n}^2 (1 + \gamma_{n,3}) - 1) \right\} M,
\end{align*}
\]
for some constant \(M > 0\). Thus, from (3.4), the fact that \(\lim_{n \to \infty} \gamma_{n,3} = 0\); \(\lim_{n \to \infty} \mu_{1,n} = 1 = \lim_{n \to \infty} \mu_{2,n}\) and the properties of \(g\), we obtain from (3.5) that
\[
\lim_{n \to \infty} \|T_2(PT_2)^{n-1}U_{n,3}z_n - z_n\| = 0.
\]
Hence, we obtain by induction that
\[
\lim_{n \to \infty} \|T_m(PT_m)^{n-1}U_{n,m+1}z_n - z_n\| = 0 \quad \text{for all} \quad m \in \mathbb{N}.
\]
Now, since
\[
\|z_n - T_m(PT_m)^{n-1}z_n\| \\
\leq \|z_n - T_m(PT_m)^{n-1}U_{n,m+1}z_n\| + \|T_m(PT_m)^{n-1}U_{n,m+1}z_n - T_m(PT_m)^{n-1}z_n\| \\
\leq \|z_n - T_m(PT_m)^{n-1}U_{n,m+1}z_n\| + \mu_{m,n} \|U_{n,m+1}z_n - z_n\| \\
\leq \|z_n - T_m(PT_m)^{n-1}U_{n,m+1}z_n\| + \mu_{m,n} \beta_{n,m+1} \|T_m(PT_m)^{n-1}U_{n,m+2}z_n - z_n\| \\
\leq \|z_n - T_m(PT_m)^{n-1}U_{n,m+1}z_n\| + (1 - \epsilon) \mu_{m,n} \|T_m(PT_m)^{n-1}U_{n,m+2}z_n - z_n\|,
\]
we have from (3.7) that
\[
\|z_n - T_m(PT_m)^{n-1}z_n\| \to 0 \quad \text{as} \quad n \to \infty.
\]
Thus, for all \(m, n \in \mathbb{N}\), we get
\[
\|T_mz_n - z_n\| \leq \|T_mz_n - T_m(PT_m)^{n-1}z_n\| + \|T_m(PT_m)^{n-1}z_n - T_m(PT_m)^{n-1}z_{n+1}\| \\
+ \|T_m(PT_m)^{n-1}z_{n+1} - z_{n+1}\| + \|z_{n+1} - z_n\| \\
\leq \mu_{m,1} \|z_n - T_m(PT_m)^{n-1}z_n\| + (1 + \mu_{m,n+1}) \|z_{n+1} - z_n\| \\
+ \|T_m(PT_m)^{n-1}z_{n+1} - z_{n+1}\|.
\]
So, using (3.9), we obtain from (3.10) and the hypothesis that
\[
\lim_{n \to \infty} \|z_n - T_mz_n\| = 0 \quad \text{for all} \quad m \in \mathbb{N}.
\]
Moreover, by Lemma 2.3, we have that \(\omega_{w_0}(x_n) \subset F\).

(3) It suffices to show that \(\bigcap_{n=1}^{\infty} F(W_n) \subset F\), since \(F \subset \bigcap_{n=1}^{\infty} F(W_n)\) is obvious. So, let \(z^* \in \bigcap_{n=1}^{\infty} F(W_n)\), and \(z_n = z^*\) for all \(n \in \mathbb{N}\), then by (2), we have that \(\|z^* - T_mz^*\| = 0\) for all \(m \in \mathbb{N}\), that is \(z^* = T_mz^*\) for all \(m \in \mathbb{N}\). This completes that proof. \(\blacksquare\)

Remark 3.1. In the sequel, \(\{\beta_{n,j} : n, j \in \mathbb{N}, 1 \leq j \leq n\}, \{\mu_{m,n}\} \subset [1, +\infty]\), and \(\{\gamma_{n,j} : n, j \in \mathbb{N}, 1 \leq j \leq n\}\) are as indicated in Lemma 3.1.

Lemma 3.2. Let \(K\) be a closed convex nonempty nonexpansive retract of a real Banach space \(E\) with \(P\) as nonexpansive retraction. Let \(T_m : K \to E\), \(m = 1, 2, \ldots\) be countably infinite family of nonself asymptotically nonexpansive mappings such that \(F = \bigcap_{m=1}^{\infty} F(T_m) \neq \emptyset\). Let \(W_n\) be the modified \(W\)-mapping generated by \(T_n, T_{n-1}, \ldots, T_2, T_1\) and \(\beta_{0,n}, \beta_{0,n-1}, \ldots, \beta_{n,2}, \beta_{n,1}\)
for all \(n \in \mathbb{N} \) as in (3.1). Let \(\{ \alpha_n \}_{n \geq 1} \subset (0, 1) \). From arbitrary \(x_1 \in K \), let the sequence \(\{ x_n \}_{n \geq 1} \) be iteratively generated by
\[
(3.12) \quad x_{n+1} = (1 - \alpha_n)x_n + \alpha_nW_n x_n \quad \text{for all } n \in \mathbb{N}.
\]
Suppose that \(\sum_{n=1}^{\infty} \gamma_{n,1} < \infty \), then \(\{ x_n \}_{n \geq 1} \) is bounded and \(\lim_{n \to \infty} \| x_n - x^* \| \) exists for all \(x^* \in F \).

Proof. Let \(x^* \in F \), then from (3.12) we have that
\[
\| x_{n+1} - x^* \| = \| (1 - \alpha_n)x_n + \alpha_nW_n x_n - x^* \| \leq (1 - \alpha_n)\| x_n - x^* \| + \alpha_n\| W_n x_n - x^* \|
\]
\[
\leq (1 - \alpha_n)\| x_n - x^* \| + \alpha_n(1 + \gamma_{n,1})\| x_n - x^* \| \leq (1 + \gamma_{n,1})\| x_n - x^* \|
\]
\[
(3.13) \quad \leq \exp \left(\sum_{i=1}^{n} \gamma_{i,1} \right) \| x_1 - x^* \| \leq \exp \left(\sum_{i=1}^{\infty} \gamma_{i,1} \right) \| x_1 - x^* \|.
\]
So, from (3.13), we get that \(\{ x_n \}_{n \geq 1} \) is bounded and by Lemma 2.1 we conclude that \(\lim_{n \to \infty} \| x_n - x^* \| \) exists. This completes the proof. \(\square \)

Lemma 3.3. Let \(E \) be a real uniformly convex Banach space, \(K \) a closed convex nonempty retract of \(E \) with \(P \) as nonexpansive retraction. Let \(T_m : K \to E \), \(m = 1, 2, \ldots \) be countably infinite family of nonself asymptotically nonexpansive mappings such that \(F = \bigcap_{m=1}^{\infty} F(T_m) \neq \emptyset \). Let \(W_n \) be the modified W-mapping generated by \(T_n, T_{n-1}, \ldots, T_2, T_1 \) and \(\beta_{n,1}, \beta_{n,2}, \beta_{n,3}, \ldots, \beta_{n,2}, \beta_{n,3}, \ldots, \beta_{n,2}, \beta_{n,3}, \ldots \) for all \(n \in \mathbb{N} \) as in (3.1). Let \(\{ \alpha_n \}_{n \geq 1} \subset (0, 1) \) such that \(\delta \leq (1 - \alpha_n) \leq (1 - \delta) \), for some \(\delta \in (0, 1) \). From arbitrary \(x_1 \in K \), let the sequence \(\{ x_n \}_{n \geq 1} \) be iteratively generated by (3.12). Suppose that \(\sum_{n=1}^{\infty} \gamma_{n,1} < \infty \), then for all \(u, v \in F \), \(\lim_{n \to \infty} \| tx_n + (1-t)u - v \| \) exists for all \(t \in [0, 1] \).

Proof. Let \(a_n(t) = \| tx_n + (1-t)u - v \| \). Then, \(\lim_{n \to \infty} a_n(0) = \| u - v \| \) and from Lemma 3.2, \(\lim_{n \to \infty} a_n(1) = \| x_n - v \| \) exists. It remains to show that \(\lim_{n \to \infty} a_n(t) \) exists for \(t \in (0, 1) \). To do this, define
\[
G_n x = (1 - \alpha_n)x + \alpha_nW_n x \quad \text{for all } x \in K.
\]
Then, the proof follows as in the proof of [20, Lemma 3]. \(\square \)

Lemma 3.4. Let \(E \) be a real uniformly convex Banach space which has a Fréchet differentiable norm, \(K \) a closed convex nonempty retract of \(E \) with \(P \) as nonexpansive retraction. Let \(T_m : K \to E \), \(m = 1, 2, \ldots \) be countably infinite family of nonself asymptotically nonexpansive mappings such that \(F = \bigcap_{m=1}^{\infty} F(T_m) \neq \emptyset \). Let \(W_n \) be the modified W-mapping generated by \(T_n, T_{n-1}, \ldots, T_2, T_1 \) and \(\beta_{n,1}, \beta_{n,2}, \beta_{n,3}, \ldots, \beta_{n,2}, \beta_{n,3}, \ldots, \beta_{n,2}, \beta_{n,3}, \ldots \) for all \(n \in \mathbb{N} \) as in (3.1). Let \(\{ \alpha_n \}_{n \geq 1} \subset (0, 1) \) such that \(\delta \leq (1 - \alpha_n) \leq (1 - \delta) \), for some \(\delta \in (0, 1) \). From arbitrary \(x_1 \in K \), let the sequence \(\{ x_n \}_{n \geq 1} \) be iteratively generated by (3.12). Then, for all \(u, v \in F \), the limit \(\lim_{n \to \infty} \langle x_n, j(u-v) \rangle \) exists. Furthermore, if \(\omega_n(x_n) \) denotes the set of weak subsequential limits of \(\{ x_n \}_{n \geq 1} \), then \(\langle x^* - y^*, j(u-v) \rangle = 0 \), \(\forall u, v \in F(T) \) and \(\forall x^*, y^* \in \omega_n(x_n) \).

Proof. This follows basically as in the proof of [20, Lemma 4] using Lemma 3.3 instead of [20, Lemma 3]. This completes the proof. \(\square \)

Theorem 3.1. Let \(E \) be a uniformly convex real Banach space \(E \) which has a Fréchet differentiable norm. Let \(K \) be a closed convex nonempty retract of \(E \) with \(P \) as nonexpansive retraction. Let \(T_m : K \to E \), \(m = 1, 2, \ldots \) be countably infinite family of nonself asymptotically nonexpansive mappings such that \(F = \bigcap_{m=1}^{\infty} F(T_m) \neq \emptyset \). Let \(W_n \) be the modified W-mapping
generated by \(T_n, T_{n-1}, \ldots, T_2, T_1 \) and \(\beta_{n,n}, \beta_{n,n-1}, \ldots, \beta_{n,2}, \beta_{n,1} \) for all \(n \in \mathbb{N} \) as in (3.1). Let \(\{\alpha_n\}_{n \geq 1} \subset (0, 1) \) be such that \(\delta \leq 1 - \alpha_n \leq 1 - \delta \), for some \(\delta \in (0, 1) \). From arbitrary \(x_1 \in K \), let the sequence \(\{x_n\}_{n \geq 1} \) be iteratively generated by (3.12). Suppose that \(\sum_{n=1}^{\infty} \gamma_n < \infty \), then \(\{x_n\}_{n \geq 1} \) converges weakly to some element of \(F \).

Proof. Let \(x^* \in F \). Since by Lemma 2.1, \(\{x_n\}_{n \geq 1} \) is bounded, we obtain from (3.12) and Lemma 2.2 that
\[
\|x_{n+1} - x^*\|^2 = \|(1 - \alpha_n)x_n + \alpha_n W_n x_n - x^*\|^2
\]
\[
\leq (1 - \alpha_n)\|x_n - x^*\|^2 + \alpha_n\|W_n x_n - x^*\|^2 - \alpha_n(1 - \alpha_n)g(\|x_n - W_n x_n\|)
\]
\[
\leq (1 - \alpha_n)\|x_n - x^*\|^2 + \alpha_n(1 + \gamma_n)\|x_n - x^*\|^2 - \delta^2 g(\|x_n - W_n x_n\|)
\]
(3.14)
for some constant \(M_1 > 0 \). Thus,
\[
\delta^2 g(\|x_n - W_n x_n\|) \leq \|x_n - x^*\|^2 - \|x_{n+1} - x^*\|^2 + \gamma_n M_1.
\]
So, properties of \(g \) and existence of the limit of the sequence \(\{\|x_n - x^*\|\}_{n \geq 1} \) give that
\[
\lim_{n \to \infty} \|x_n - W_n x_n\| = 0.
\]
Furthermore, we obtain from the recursion formula (3.12) that
\[
\|x_{n+1} - x_n\| = \alpha_n\|x_n - W_n x_n\| \leq \|x_n - W_n x_n\| \to 0 \quad \text{as} \quad n \to \infty.
\]
So, using (3.15) and (3.16), we obtain from Lemma 3.1 that \(\omega_0(x_n) \subset F \). Moreover, reflexivity of \(E \) implies the existence of a subsequence \(\{x_{n_j}\}_{j \geq 1} \) of \(\{x_n\}_{n \geq 1} \) which converges weakly to some \(u^* \in K \). We also obtain from Lemma 3.1 that \(\lim_{j \to \infty} \|x_{n_j} - T_{n_j} x_{n_j}\| = 0 \) and hence \(u^* = T_{n_j} u^* \) for all \(m \in \mathbb{N} \) (since by Lemma 2.3, \((I - T_m) \) is demiclosed at 0 for all \(m \in \mathbb{N} \)). We now show that \(\{x_{n_j}\}_{n_j \geq 1} \) converges weakly to \(u^* \). Suppose that \(\{x_{n_j}\}_{n_j \geq 1} \) is another subsequence of \(\{x_n\}_{n \geq 1} \) which converges weakly to some \(v^* \). Since \(v^* \) must be in \(F(T_m) \) for all \(m \in \mathbb{N} \), then by Lemma 3.4, we have that \(u^* = v^* \). Hence, \(\omega_0(x_n) \) is a singleton, so that \(\{x_n\}_{n \geq 1} \) converges weakly to some element of \(F = \bigcap_{m=1}^{\infty} F(T_m) \). This completes the proof.

If in Theorem 3.1, we have that \(T_m \) is nonexpansive for all \(m = 1, 2, \ldots \), then we get the following corollary.

Corollary 3.1. Let \(E \) be a uniformly convex real Banach space \(E \) which has a Fréchet differentiable norm. Let \(K \) be a closed convex nonempty retract of \(E \) with \(\text{P} \) as nonexpansive retraction. Let \(T_m : K \to E \), \(m = 1, 2, \ldots \) be countably infinite family of nonself nonexpansive mappings such that \(F = \bigcap_{m=1}^{\infty} F(T_m) \neq \emptyset \). Let \(W_n \) be the modified \(W \)-mapping generated by \(T_n, T_{n-1}, \ldots, T_2, T_1 \) and \(\beta_{n,n}, \beta_{n,n-1}, \ldots, \beta_{n,2}, \beta_{n,1} \) for all \(n \in \mathbb{N} \) as in (3.1). Let \(\{\alpha_n\}_{n \geq 1} \subset (0, 1) \) be such that \(\delta \leq 1 - \alpha_n \leq 1 - \delta \), for some \(\delta \in (0, 1) \). From arbitrary \(x_1 \in K \), let the sequence \(\{x_n\}_{n \geq 1} \) be iteratively generated by (3.12). Then, \(\{x_n\}_{n \geq 1} \) converges weakly to some element of \(F \).

Proof. Since \(\mu_{j,n} \equiv 1 \) for all \(n, j \in \mathbb{N} \), we get that \(\gamma_{n,1} = 0 \) for each \(n \in \mathbb{N} \) and hence \(\sum_{n=1}^{\infty} \gamma_{n,1} = 0 \). Therefore, the conclusion follows from Theorem 3.1.

Remark 3.2. If in the definition of the modified \(W \)-mapping, the family \(T_m : K \to K \), \(m = 1, 2, \ldots \) are self mappings, then the nonexpansive retraction \(P \) becomes identity operator on \(K \). Thus, we have the following corollary.
Corollary 3.2. Let K be a closed convex nonempty subset of a uniformly convex real Banach space E which has a Fréchet differentiable norm. Let $T_n : K \to K$, $m = 1, 2, \ldots$ be countably infinite family of asymptotically nonexpansive self-map such that $F = \bigcap_{m=1}^{\infty} F(T_m) \neq \emptyset$. Let W_n be the modified W-mapping generated by $T_n, T_{n-1}, \ldots, T_2, T_1$ and $\beta_{n,m}, \beta_{n,m-1}, \ldots, \beta_{n,2}, \beta_{n,1}$ for all $n \in \mathbb{N}$ as in (1.4). Let $\{\alpha_n\}_{n \geq 1} \subset (0, 1)$ be such that $\delta \leq 1 - \alpha_n \leq 1 - \delta$, for some $\delta \in (0, 1)$. From arbitrary $x_1 \in K$, let the sequence $\{x_n\}_{n \geq 1}$ be iteratively generated by (3.12) with $P = I$, identity mapping on K. Suppose that $\sum_{n=1}^{\infty} \gamma_n < \infty$, then $\{x_n\}_{n \geq 1}$ converges weakly to some element of F.

Proof. Follows from Theorem 3.1.

If in Theorem 3.1, we have that $\{T_m, m = 1, 2, \ldots, r\}$ is finite family of asymptotically nonexpansive mappings, we define W_n as follows: Let $T_n : K \to E$, $m = 1, 2, \ldots, r$ be a finite family of nonself asymptotically nonexpansive mappings and $\{\beta_{n,m}\}_{n \in \mathbb{N}, m = 1, 2, \ldots, r} \subset (0, 1)$. Then, for the family $\{T_m\}_{m = 1, 2, \ldots, r}$, the modified W-mapping generated by $T_r, T_{r-1}, \ldots, T_2, T_1$ and $\beta_{n,r}, \beta_{n,r-1}, \ldots, \beta_{n,2}, \beta_{n,1}$ is given by:

1. for $n \leq r$, we take W_n as in (3.1);
2. for $n \geq r + 1$, we have the following:

$$U_{n,r+1} = I,$$ identity mapping on K,

$$U_{n,r} = P(\beta_{n,r} T_r (PT_r)^{n-1} U_{n,r+1} + (1 - \beta_{n,r}) I),$$

$$U_{n,r-1} = P(\beta_{n,r-1} T_{r-1} (PT_{r-1})^{n-1} U_{n,r} + (1 - \beta_{n,r-1}) I),$$

$$\vdots$$

$$U_{n,j} = P(\beta_{n,j} T_j (PT_j)^{n-1} U_{n,j+1} + (1 - \beta_{n,j}) I),$$

$$\vdots$$

$$U_{n,2} = P(\beta_{n,2} T_2 (PT_2)^{n-1} U_{n,3} + (1 - \beta_{n,2}) I),$$

$$W_n = U_{n,1} = P(\beta_{n,1} T_1 (PT_1)^{n-1} U_{n,2} + (1 - \beta_{n,1}) I).$$

(3.17)

Now, we state a corollary for finite family of nonself asymptotically nonexpansive mappings.

Corollary 3.3. Let E be a uniformly convex real Banach space E which has a Fréchet differentiable norm. Let K be a closed convex nonempty retract of E with P as nonexpansive retraction. Let $T_m : K \to E$, $m = 1, 2, \ldots, r$ be finite family of nonself asymptotically nonexpansive mappings such that $F = \bigcap_{m=1}^{\infty} F(T_m) \neq \emptyset$. Let W_n be the modified W-mapping generated by $T_r, T_{r-1}, \ldots, T_2, T_1$ and $\beta_{n,r}, \beta_{n,r-1}, \ldots, \beta_{n,2}, \beta_{n,1}$ for all $n \in \mathbb{N}$ as in (3.17) such that $\sum_{n=1}^{\infty} (\mu_{m,n}^2 - 1) < \infty$, for $m = 1, 2, \ldots, r$. Let $\{\alpha_n\}_{n \geq 1} \subset (0, 1)$ be such that $\delta \leq 1 - \alpha_n \leq 1 - \delta$, for some $\delta \in (0, 1)$. From arbitrary $x_1 \in K$, let the sequence $\{x_n\}_{n \geq 1}$ be iteratively generated by (3.12). Then $\{x_n\}_{n \geq 1}$ converges weakly to some element of F.

Proof. Take $T_i = I$, identity operator on K, with $\mu_{i,n} = 1$ and $\beta_{i,j} = \alpha \in (\varepsilon, 1 - \varepsilon)$ for $i \geq r + 1$ in Theorem 3.1. Then, since $\sum_{i=1}^{\infty} (\mu_{m,n}^2 - 1) < \infty$ for $m = 1, 2, \ldots, r$, we have that $\sum_{i=1}^{\infty} \gamma_i < \infty$. Thus, the conclusion follows from Theorem 3.1.

Now, we give strong convergence theorems.
Theorem 3.2. Let \(K \) be a closed convex nonempty retract of a uniformly convex real Banach space \(E \) with \(P \) as nonexpansive retraction. Let \(T_m : K \to E \), \(m = 1, 2, \ldots \) be countably infinite family of nonself asymptotically nonexpansive mappings such that \(F = \bigcap_{m=1}^{\infty} F(T_m) \neq \emptyset \). Let \(W_n \) be the modified W-mapping generated by \(T_n, T_{n-1}, \ldots, T_2, T_1 \) and \(\beta_{n,n}, \beta_{n,n-1}, \ldots, \beta_{n,2}, \beta_{n,1} \) for all \(n \in \mathbb{N} \) as in (3.1). Let \(\{\alpha_n\}_{n \geq 1} \subset (0, 1) \) be such that \(\delta \leq 1 - \alpha_n \leq 1 - \delta \), for some \(\delta \in (0, 1) \). From arbitrary \(x_1 \in K \), let the sequence \(\{x_n\}_{n \geq 1} \) be iteratively generated by (3.12). Suppose that \(\sum_{n=1}^{\infty} T_{n,1} < \infty \) and that one member of the family \(\{T_m\}_{m \geq 1} \) is either semicompact or completely continuous, then \(\{x_n\}_{n \geq 1} \) converges strongly to some element of \(F \).

Proof. For fixed \(r \in \mathbb{N} \), let \(T_r \) be semicompact. Since \(\lim_{n \to \infty} ||x_n - T_r x_n|| = 0 \), there exists a subsequence say \(\{x_{n_k}\}_{k \geq 1} \) of \(\{x_n\}_{n \geq 1} \) that converges strongly to some point \(z^* \in K \). Thus, by continuity of \(T_r \), we have that \(T_r z^* = z^* \). Furthermore, since \(T_m \) is continuous for all \(m \in \mathbb{N} \) and \(\lim_{n \to \infty} ||z_{n_k} - T_m z_{n_k}|| = 0 \), we have that \(z^* \in F \). Hence, we obtain from Lemma 3.2 that \(\{x_n\}_{n \geq 1} \) converges strongly to \(z^* \in F \).

If, on the other hand, one member of the family \(\{T_m\}_{m \geq 1}, \) say \(T_q \) (for some \(q \in \mathbb{N} \)) is completely continuous, then since \(\{x_n\}_{n \geq 1} \) is bounded, we have that \(\{T_q x_n\} \) is bounded. Thus, there exists a subsequence \(\{T_q x_{n_j}\}_{j \geq 1} \) of \(\{T_q x_n\}_{n \geq 1} \) which converges to some \(x^* \). Since by Lemma 3.1, \(\lim_{j \to \infty} ||x_{n_j} - T_q x_{n_j}|| = 0 \), we have that \(\lim_{j \to \infty} x_{n_j} = x^* \). Furthermore, we have that \(x^* \in F \) since \(\lim_{j \to \infty} ||x_{n_j} - T_m x_{n_j}|| = 0 \) and \(T_m \) is continuous for all \(m \in \mathbb{N} \). Finally, since \(\lim_{j \to \infty} ||x_{n_j} - x^*|| \) exists by Lemma 3.2, we obtain that \(\{x_n\}_{n \geq 1} \) converges strongly to \(x^* \in F \). This completes the proof.

If in Theorem 3.2, we have that \(T_m \) is nonexpansive for \(m = 1, 2, \ldots \), then we get the following corollary.

Corollary 3.4. Let \(K \) be a closed convex nonempty nonexpansive retract of uniformly convex real Banach space \(E \) with \(P \) as nonexpansive retraction. Let \(T_m : K \to E \), \(m = 1, 2, \ldots \) be countably infinite family of nonself nonexpansive mappings such that \(F = \bigcap_{m=1}^{\infty} F(T_m) \neq \emptyset \). Let \(W_n \) be the modified W-mapping generated by \(T_n, T_{n-1}, \ldots, T_2, T_1 \) and \(\beta_{n,n}, \beta_{n,n-1}, \ldots, \beta_{n,2}, \beta_{n,1} \) for all \(n \in \mathbb{N} \) as in (3.1). Let \(\{\alpha_n\}_{n \geq 1} \subset (0, 1) \) be such that \(\delta \leq 1 - \alpha_n \leq 1 - \delta \), for some \(\delta \in (0, 1) \). From arbitrary \(x_1 \in K \), let the sequence \(\{x_n\}_{n \geq 1} \) be iteratively generated by (3.12). Suppose that one member of the family \(\{T_m\}_{m \geq 1} \) is either semicompact or completely continuous, then \(\{x_n\}_{n \geq 1} \) converges strongly to some element of \(F \).

For finite family of nonself asymptotically nonexpansive mappings, we have the following corollary.

Corollary 3.5. Let \(K \) be a closed convex nonempty nonexpansive retract of uniformly convex real Banach space \(E \) with \(P \) as nonexpansive retraction. Let \(T_m : K \to E \), \(m = 1, 2, \ldots, r \) be finite family of nonself asymptotically nonexpansive mappings such that \(F = \bigcap_{m=1}^{\infty} F(T_m) \neq \emptyset \). Let \(W_n \) be the modified W-mapping generated by \(T_1, T_2, \ldots, T_r \) and \(\beta_{n,r}, \beta_{n,r-1}, \ldots, \beta_{n,2}, \beta_{n,1} \) for all \(n \in \mathbb{N} \) as in (3.17) such that \(\sum_{m=1}^{\infty}(\mu_m^2, m_n - 1) < \infty \) for \(m = 1, 2, \ldots, r \). Let \(\{\alpha_n\}_{n \geq 1} \subset (0, 1) \) be such that \(\delta \leq 1 - \alpha_n \leq 1 - \delta \), for some \(\delta \in (0, 1) \). From arbitrary \(x_1 \in K \), let the sequence \(\{x_n\}_{n \geq 1} \) be iteratively generated by (3.12). Suppose that one member of the family \(\{T_m\}_{m \geq 1} \) is either semicompact or completely continuous, then \(\{x_n\}_{n \geq 1} \) converges strongly to some element of \(F \).

If in the definition of the modified W-mapping, the family \(T_m : K \to K \), \(m = 1, 2, \ldots \) are self mappings, then we have the following corollary.
Corollary 3.6. Let K be a nonempty closed convex subset of a uniformly convex real Banach space. Let $T_m : K → K$, $m = 1, 2, ...$, be countably infinite family of self asymptotically nonexpansive mappings such that $F = \bigcap_{m=1}^{\infty} F(T_m) \neq \emptyset$. Let W_n be the modified W-mapping generated by $T_n, T_{n-1}, ..., T_2, T_1$ and $\beta_{n,n}, \beta_{n,n-1}, ..., \beta_{n,2}, \beta_{n,1}$ for all $n \in \mathbb{N}$ as in (1.4). Let $\{\alpha_n\}_{n \geq 1} \subset (0, 1)$ be such that $\delta \leq 1 - \alpha_n \leq 1 - \delta$, for some $\delta \in (0, 1)$. From arbitrary $x_1 \in K$, let the sequence $\{x_n\}_{n \geq 1}$ be iteratively generated by (3.12). Suppose that $\sum_{n=1}^{\infty} \gamma_n < \infty$; and that one member of the family $\{T_m\}_{m \geq 1}$ is either semicompact or completely continuous, then $\{x_n\}_{n \geq 1}$ converges strongly to some element of F.

Proof. The proof follows as in the proof of Theorem 3.2.

Remark 3.3. All the theorems and corollaries obtained in this paper are also valid for the so-called Ishikawa-type iteration method with parameters $\{\alpha_n\}_{n \geq 1}$ and $\{\beta_n\}_{n \geq 1}$. Under the conditions on $\{\alpha_n\}_{n \geq 1}$ and $\{\beta_n\}_{n \geq 1}$ in which they are independent, there is no further generality obtained in using the cumbersome Ishikawa-type scheme rather than the scheme considered in this paper given by the recurrence relation (3.12). In fact, in this case, setting $\beta_n = 0$ for all $n \in \mathbb{N}$, the so-called Ishikawa-type algorithm reduces to the Mann-type scheme considered in this paper.

Remark 3.4. Theorem 3.1 extends and generalizes Theorem 1 of Osilike and Aniagbosor [19] and Theorem 1.5 to the more general case of countably infinite family of nonself asymptotically nonexpansive mappings with Opial’s condition dispensed. Moreover, Theorem 3.2 extends Theorems 1.3, 1.4, the corresponding results of Rhoades [22], Osilike and Aniagbosor [19] and those of many other authors to the more general case of countably infinite family of nonself asymptotically nonexpansive mappings. No boundedness assumption is imposed on K. Furthermore, the results of [7–9] are generalized and improved upon. We remark that Theorem 3.1 is applicable in L_p spaces $1 < p < +\infty$, while 1.5 and the corresponding results of [19] are not.

References

