On non-normality points and metrizable crowded spaces

SERGEI LOGUNOV

Abstract. $\beta X - \{p\}$ is non-normal for any metrizable crowded space X and an arbitrary point $p \in X^*$.

Keywords: nice family, p-filter, p-ultrafilter, projection, non-normality point, butterfly-point

Classification: 54D35

1. Introduction

We investigate non-normality points in Čech-Stone remainders $X^* = \beta X - X$ of metrizable spaces.

There are several simple proofs that, under CH, $\omega^* - \{p\}$ is not normal for any $p \in \omega^*$ [7], [8]. “Naively” it is known only for special points of ω^*. If p is an accumulation point of some countable discrete subset of ω^*, or if p is a strong R-point, or if p is a Kunen’s point, then $\omega^* - \{p\}$ is not normal (Blaszczyk and Szymanski [1], Gryzlov [2], van Douwen respectively).

What about realcompact crowded spaces? Is $\beta X - \{p\}$ non-normal whenever X is realcompact and crowded and $p \in X^*$? Probably, but we are unaware of any counterexample. On the other hand, the answer is “yes” if X is a locally compact Lindelöf separable crowded space with $\pi w(X) \leq \omega_1$ and p is remote [5]. It is also “yes” if X is a second countable crowded space and either X is locally compact, or X is zero-dimensional, or p is remote [3], [4], [6]. Using the regular base of Arhangel’skiǐ J. Terasawa has omitted the separability condition in the last two cases. He has obtained the affirmative answer in case if X is a metrizable crowded space and either X is strongly zero-dimensional or p is remote [10]. Here, introducing p-filters into this construction, we answer affirmatively for all metrizable crowded spaces.

B. Shapirovskij [9] has defined a butterfly-point (or b-point) in a space X. We call $p \in X^*$ a butterfly-point in βX, if $\{p\} = \text{Cl } F \cap \text{Cl } G$ for some $F, G \subset X^* - \{p\}$ with $\text{Cl } (F \cup G) \subset X^*$.

Theorem. Let X be a non-compact metrizable crowded space. Then any point $p \in X^*$ is a butterfly-point in βX. Hence $\beta X - \{p\}$ is not normal.
2. Proofs

From now on a space X is non-compact, metrizable and crowded, i.e. X has no isolated points, and $p \in X^*$ is an arbitrary point. We denote by cl- and Cl-
the closure operations in X and βX respectively, $3 = \{0, 1, 2\}$.

Let π and σ be an arbitrary families. A set $U \in \pi$ is called a maximal member of the family π if $U \subsetneq V$ for no $V \in \pi$. If members of π are mutually disjoint (with closure), then π is called (strongly) cellular. We write $\pi \prec \sigma$ if $U \cap V \neq \emptyset$ implies $U \supsetneq V$ for any $U \in \pi$ and $V \in \sigma$. We denote by $\text{Exp} \pi$ the set of subfamilies $\{F : F \subset \pi\}$. We define a projection f_{σ}^π from $\text{Exp} \pi$ to $\text{Exp} \sigma$ by $f_{\sigma}^\pi F = \{V \in \sigma : \bigcup F \cap V \neq \emptyset\}$ for every $F \in \text{Exp} \pi$.

A maximal locally finite cellular family of open sets is called nice. The introduced in [6] cellular refinement $\text{Cel} (\pi) = \{\bigcap \phi - \text{cl} (\bigcup (\pi - \phi) : \phi \subset \pi\}$ of π is nice, if π is an open locally finite cover of X.

Let π and σ be nice families. A collection $\mathcal{F} = \{F\}$ of subfamilies $F \subset \pi$ is called a p-filter on π, if $p \in \text{Cl} \bigcup_{k=0}^{n} F_k$ for any finite subcollection $\{F_0, \ldots, F_n\} \subset \mathcal{F}$. Obviously, the union of any increasing family of p-filters is also a p-filter. So by Zorn's lemma there are maximal p-filters or p-ultrafilters \mathcal{F}' on π, that is $\mathcal{F}' = \mathcal{G}$ for any p-filter \mathcal{G} with $\mathcal{F}' \subset \mathcal{G}$. Adding step-by-step new subfamilies from $\text{Exp} \pi - \mathcal{F}$ to \mathcal{F}, while possible, we can embed any p-filter \mathcal{F} into some p-ultrafilter \mathcal{F}'. If p is not a remote point, distinct p-ultrafilters \mathcal{F}' may exist. But each of them contains $\pi(O) = \{V \in \pi : V \cap O \neq \emptyset\}$ for any neighborhood O of p and its image $f_{\sigma}^\pi F = \{f_{\sigma}^\pi F : F \in \mathcal{F}\}$ is a p-filter on σ. We write $\pi \prec_{\mathcal{F}} \sigma$, if there is $F \in \mathcal{F}$ with $F \prec \sigma$. We denote $\bigcap \mathcal{F}^* = \bigcap \{\text{cl} \bigcup F : F \in \mathcal{F}\}$.

For every $i \in \mathbb{N}$ we fix an open locally finite cover \mathcal{P}_i of X so that $\text{diam} U \leq \frac{1}{i}$ for any $U \in \mathcal{P}_i$ and $\{V \in \mathcal{P}_j : V \cap U \neq \emptyset\}$ is finite for each $j < i$. Then it is easy to see that

$$\mathcal{P} = \bigcup_{i \in \mathbb{N}} \mathcal{P}_i$$

is a regular base of Arhangel'skiĭ, i.e. for any point $x \in X$ and for any its neighborhood $O \subset X$ there is another neighborhood $O' \subset X$ of x with the following properties: $O' \subset O$ and at most finitely many members of \mathcal{P} meet both O' and $X - O$ simultaneously. Moreover, for any cover $\pi \subset \mathcal{P}$ the family of its maximal members is a locally finite subcover of X.

By induction (see, also, [6]) we define the families of non-empty open sets \mathcal{D}_k and $\mathcal{W}_k \subset \mathcal{P}$ for all $k \in \mathbb{N}$ as follows:

$$\mathcal{D}_1 = \text{Cel} (\mathcal{P}_1).$$

If a nice family $\mathcal{D}_k = \{U\}$ has been constructed, then

$$\mathcal{W}_k = \{U(\nu) : U \in \mathcal{D}_k \text{ and } \nu \in \{3\}\}$$
is strongly cellular with \(\text{cl } U(\nu) \subset U \) for any its member and

\[
D_{k+1} = \text{Cel}(D_k \cup W_k \cup P_{k+1}).
\]

By our construction, if \(U, V \in \bigcup_{k \in \mathbb{N}} D_k \) are not disjoint, then either \(U \subseteq V \) or \(U \supseteq V \). For any \(U \in P_k \) the family \(\hat{U} = \{V \in D_k : V \cap U \neq \emptyset\} \) is locally finite and nice in \(U \). For any locally finite cover \(\pi \subset \mathcal{P} \) we denote \(\sigma(\pi) \) all maximal members of the family \(\bigcup \{\hat{U} : U \in \pi\} \). Then \(\sigma(\pi) \) is nice. Define

\[
\Sigma = \{ \sigma(\pi) : \pi \subset \mathcal{P} \text{ is a locally finite cover of } X \}
\]

and put \(\sigma(\nu) = \{U(\nu) : U \in \sigma\} \) for any \(\sigma \in \Sigma \) and \(\nu \in 3 \).

Lemma 1. If \(\pi \) is an open locally finite cover of \(X \), then \(\text{Cel}(\pi) \) is nice.

Proof: Let \(\phi \subset \pi \). If \(\bigcap \phi \neq \emptyset \), then \(\phi \) is finite. So \(\bigcap \phi \) and, hence, \(\bigcap \phi - \text{cl}(\pi - \phi) \) is open.

Let \(\phi, \phi' \subset \pi \) be different and \(U \in \phi - \phi' \). Then \(\bigcap \phi \subset U \) and \(\bigcap \phi' \cap U = \emptyset \), because \(U \in \pi - \phi' \).

Let a neighborhood \(O \) of \(x \in X \) meet finitely many members of \(\pi \), say \(U_1, \ldots, U_k \). If \(\phi \subset \pi \) contains some \(U \in \pi - \{U_1, \ldots, U_k\} \), then \(\bigcap \phi \subset U \subset X - O \). So \(O \) meets at most \(2^k \) members of \(\text{Cel}(\pi) \).

As \(\pi \) is a locally finite family of open sets, \(K = \bigcup \{\text{cl } U - U : U \in \pi\} \) is nowhere dense. Let \(x \notin K \) and \(\phi = \{U \in \pi : x \in U\} \). Then \(U \notin \phi \) implies \(x \notin \text{cl } U \). So \(x \in \bigcap \phi - \text{cl} \bigcup (\pi - \phi) \), because \(\pi \) is conservative, and \(\text{Cel}(\pi) \) is maximal. Our proof is complete. \(\square \)

Lemma 2. There is a well-ordered chain \(\{\sigma_\alpha : \alpha < \lambda\} \subset \Sigma \) and \(p \)-ultrafilters \(\mathcal{F}_\alpha \) on \(\sigma_\alpha \) with the following properties for all \(\alpha < \beta < \lambda \) and \(f_\beta^\alpha = f_\sigma^\beta_\alpha \):

1. \(p \notin \text{cl } U \) for each \(U \in \sigma_0 \);
2. \(f_\beta^\alpha \mathcal{F}_\alpha \subset \mathcal{F}_\beta \);
3. \(\sigma_\alpha \prec F_\alpha \sigma_\beta \);
4. for any \(\sigma \in \Sigma - \{\sigma_\alpha : \alpha < \lambda\} \) there is \(\alpha < \lambda \) with \(\lnot (\sigma_\alpha \prec F_\alpha \sigma) \).

Proof: Let \(\pi \) be all maximal members of the cover \(\{U \in \mathcal{P} : p \notin \text{cl } U\} \) and let \(\mathcal{F}_0 \) be any \(p \)-ultrafilter on \(\sigma_0 = \sigma(\pi) \).

For any ordinal \(\beta \) assume \(p \)-ultrafilters \(\mathcal{F}_\alpha \) on \(\sigma_\alpha \in \Sigma \) have been constructed for all \(\alpha < \beta \). If some \(\sigma \in \Sigma - \{\sigma_\alpha : \alpha < \beta\} \) satisfies the condition \(\sigma_\alpha \prec F_\alpha \sigma \) for all \(\alpha < \beta \), then we put \(\sigma_\beta = \sigma \) and embed the \(p \)-filter \(\bigcup_{\alpha<\beta} f_\beta^\alpha \mathcal{F}_\alpha \) into some \(p \)-ultrafilter \(\mathcal{F}_\beta \) on \(\sigma_\beta \). Otherwise our construction is complete. \(\square \)

Lemma 3. \(\bigcap \mathcal{F}_0^* \subset X^* \).

Proof: Let \(x \in X \) be an arbitrary point. Then \(F = \{U \in \sigma_0 : x \notin \text{cl } U\} \) satisfies, obviously, \(x \notin \text{cl } \bigcup F \) and \(F \in \mathcal{F}_0 \). \(\square \)
Lemma 4. If \(\alpha < \beta < \lambda \), then \(\bigcap F^*_\beta \subset \bigcap F^*_\alpha \).

Proof: There is \(F \in F_\alpha \) with \(F \prec \sigma_\beta \) by (3). For any \(G \in F_\alpha \) we have \(G \cap F \in F_\alpha \) and \(G \cap F \prec \sigma_\beta \). But then
\[
\bigcap F^*_\beta \subset \text{Cl} f^*_\beta (G \cap F) \subset \text{Cl} (G \cap F) \subset \text{Cl} G.
\]
\end{proof}

Lemma 5. For any neighbourhood \(O \) of \(p \) in \(\beta X \) there is \(\alpha < \lambda \) with \(\bigcap F^*_\alpha \subset O \).

Proof: Let \(\text{Cl} O' \subset O \) for a neighbourhood \(O' \) of \(p \) and let \(\pi \) be all maximal members of the cover \(\{U \in \mathcal{P} : U \cap O' \neq \emptyset \Rightarrow U \subset O\} \). For \(\sigma = \sigma(\pi) \) there is \(\alpha < \lambda \) with \(- (\sigma_\alpha \prec F_\alpha \sigma) \) by (3) or (4). As \(\sigma_\alpha (O') \in F_\alpha \) then \(F = \{V \in \sigma_\alpha (O') : V \subset U \text{ for some } U \in \sigma\} \) also belongs \(F_\alpha \). So \(\bigcap F^*_\alpha \subset \text{Cl} \bigcup F \subset \text{Cl} \bigcup \sigma (O') \subset \text{Cl} O \).
\end{proof}

Proposition 6. For any \(\alpha < \lambda \) and \(\nu \in 3 \) there is a point \(p_\alpha (\nu) \in \bigcap F^*_\alpha \) such that \(p_\alpha (\nu) \in \text{Cl} \bigcup \sigma_\beta (\nu) \) for all \(\beta \in \lambda - \alpha \).

Proof: Let \(\alpha < \beta_0 < \ldots < \beta_n < \lambda \) be any finite sequence and \(F \in F_\alpha \). Our idea is to find non-empty \(W \in \bigcup_{i \leq n} \sigma_\beta_i \) so that
\[
W(\nu) \subseteq \bigcap \bigcup_{i \leq n} \sigma_\beta_i (\nu) \cap \bigcup F.
\]

At the first step of induction we put \(\Delta_0 = \{\sigma_\beta_i : i \leq n\} \), \(\Theta_0 = \emptyset \) and choose \(W_0 \in \bigcup \Delta_0 \) as follows: We may assume \(F \prec \sigma_\beta_0 \). For any \(i < n \) there is \(G_i \in F_\beta_i \) with \(G_i \prec \sigma_\beta_{i+1} \). We denote \(F_0 = f^\alpha_\beta_0 F \cap G_0 \) and \(F_{i+1} = f^\beta_{i+1} F_i \cap G_{i+1} \). Then \(F_{i+1} \succ F_i \) and \(\bigcup F_{i+1} \subseteq \bigcup F_i \). Any pairwise intersecting \(U_i \in F_i \) make up an embedded sequence \(U_n \subseteq \ldots \subseteq U_0 \subseteq \bigcup F \). We define \(W_0 = U_0 \).

For any \(m < n \) let \(\Delta_m, \Theta_m \subset \Delta_0 \) and \(W_m \in \bigcup \Delta_m \) has been constructed so that
\begin{enumerate}
\item \(\Delta_m \cap \Theta_m = \emptyset \);
\item \(\Delta_m \cup \Theta_m = \Delta_0 \);
\item \(W_m \subseteq \bigcup F \);
\item \(W_m \subseteq \bigcup \sigma (\nu) \) for any \(\sigma \in \Theta_m \);
\item for any \(\sigma \in \Delta_m \) there is \(U_\sigma \in \sigma \) with \(U_\sigma \subseteq W_m \).
\end{enumerate}

Let \(\Omega_m = \{\sigma \in \Delta_m : U_\sigma = W_m\} \).

If \(\Delta_m \neq \Omega_m \), then we put \(\Delta_{m+1} = \Delta_m - \Omega_m \) and \(\Theta_{m+1} = \Theta_m \cup \Omega_m \). As \(\sigma \in \Delta_{m+1} \) are nice, we can choose \(U'_\sigma \in \sigma \) so that \(\bigcap \{U'_\sigma \in \sigma : \sigma \in \Delta_{m+1}\} \cap W_m (\nu) \neq \emptyset \). Then \(U_\sigma \subseteq W_m \) implies \(U'_\sigma \subseteq W_m (\nu) \) by our construction. We define \(W_{m+1} \) to be the maximal member of embedded sequence \(\{U'_\sigma : \sigma \in \Delta_{m+1}\} \).

If, finally, \(\Delta_m = \Omega_m \), then \(W_m \) is as required.
\end{proof}
PROOF OF THEOREM: Define \(F_\nu = \{ p_\alpha(\nu) : \alpha < \lambda \} \) for all \(\nu \in 3 \). By our construction, \(F_\nu \subset \bigcap F^*_0 \subset X^* \) and for any neighbourhood \(O \) of \(p \) there is \(\alpha < \lambda \) with \(\{ p_\beta(\nu) : \beta \in \lambda - \alpha \} \subset \bigcap F^*_\alpha \subset O \). Then the condition \(\{ p_\beta(\nu) : \beta < \alpha \} \subset \text{Cl} \bigcup \sigma_\alpha(\nu) \) implies that the sets \(\text{Cl} F_\nu - \{ p \} \) are pairwise disjoint and \(p \in F_\nu \) for no more then one unique \(F_\nu \). The other two ensure that \(p \) is a \(b \)-point in \(\beta X \).

Our proof is complete. \[\square \]

REFERENCES

DEPARTMENT FOR ALGEBRA AND TOPOLOGY, UDMURTIA STATE UNIVERSITY,
UNIVERSITETSKAYA 1, IZHEVSK 426034, RUSSIA
E-mail: slogani@udm.net

(Received June 18, 2005, revised May 22, 2007)