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Outline of the talk

» Introduction
» What are Lissajous-Chebyshev points?
> Preliminary questions towards a unified theory
» Interpolation on Lissajous-Chebyshev nodes ﬁfg)

> Some description of the involved Lissajous curves
> Interpolation and quadrature on LC(™
» Convergence and fast algorithms of the interpolation schemes
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Definition of Lissajous-Chebyshev points Q(@m)

We define the sets ;(ﬁm) with help of the index sets

|(£’") I('") U1 with the sets If,c 7, v€{0,1}, given by

-K,1

|(ﬂ):{i€NO|VJ: 0<ji<mjand j=t+k; mod2}.

L

(a) Index set 15%) (b) Index set 1(p>
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With the Chebyshev-Gauss-Lobatto points given by

1 I

Id

we then define the Lissajous-Chebyshev points as

27 = (A™,...Z™) A" = cos(in/m).
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Cardinalities of the node sets

We have

HLCE = 41 = 4170 + 41

)

(m)

1
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#m = [ m+t2 I m = JI m+tt
ie{1,...,d} 2 ie{1,..,d} 2 ie{1,...,d} 2
m;=0 mod 2 m=0 mod 2 m=1 mod 2
Ki=t mod 2 KiZt mod 2
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Examples

The interpolation nodes gﬁcﬂ) are well-known in the literature

» Morrow-Patterson-Xu points 2D: ﬁg”m) [10, 11].

» Morrow-Patterson-Xu points 3D: Efim’m’m) [5].

» Padua points: ﬁ(m)) form=(mm+1)orm=(m+1,m)[3, 4]

(0,0

» Lissajous nodes in MPI: &8"{3’2"’2) with my, my relatively prime [9].

> Degenerate Lissajous curves: LCO(M), in which m consists of

relatively prime numbers [6].

LC™ are also well-known nodes for multivariate quadrature [1].
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Observation 1:

» Polynomial interpolation on all of these point sets is very similar.

» Many of these points have a generating Lissajous curve:

ﬁg’g;(t) = (sin3t,sin 4t)

o
3

NN
A
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—0.5

Non-degenerate Lissajous curve used
in Magnetic Particle Imaging [9].
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ﬁﬁg’gﬁ(t) = (cos 5t, cos 6t)

0.5

Degenerate Lissajous curve
generating the Padua points [3, 4].

Motivation 7/30



Observation 2:

» Morrow-Patterson-Xu (MPX) points are more symmetric compared
to Padua points. In the literature, there is however no generating
curve given for MPX points.

> Interpolation spaces have a slightly more complicated structure [11].
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Is there a way to get a single Lissajous curve that connects these points?
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Questions considered in this tutorial

> Is there a unified interpolation framework including Padua points,
MPX points and Lissajous curves?

> Is there a single generating curve for the MPX points? What are the
alternatives?

» Are there fundamental differences in the convergence and the
implementation of the different schemes?
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Definition of d-dimensional Lissajous curves

We will consider d-dimensional Lissajous curves
(m) . d
biw: R—R

in the parametrized form

fm) (1) = (U Cos(m["ﬂwr>,...7udcos<m["']'t—“ﬂ>>7

my mq

where
» m=(m,...,myg) € N? are ‘frequency dividers’,
» uc {—1,1}9 are ‘reflection parameters’,
» lem[m] is the least common multiple of my, ..., my,
» k= (K1,...,kd) € RY specifies additional phase shifts.

The definition guarantees that in any case the minimal period of Z,i IS 2.

We know: If the entries m; are pairwise relatively prime, then the
Lissajous curve ﬁ(ﬁﬂ) generates the points Q(ﬁm) [6].
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If we try to use Lissajous curves to generate the MPX points we get

0.5
£ 0 g
-0.5
o
71 Il ' L
—1 —0.5 0 0.5 1

Using ﬁgg:gg(t) = (cost,cost) as Using £ gg;(t) 2(4 4 ( ) and ﬁgg:i;(t)
generating curve. as generating curves

Observation: For MPX points in general more than 1 generating
curve is needed. The number depends on m and k.
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The union of all generating Lissajous curves forms an algebraic variety

[ C(im):{ge[—lﬂ]d‘(—1)"“1Tm1(x1):...z(—l)""de(xd)}, ]

where T, denote the Chebyshev polynomial of first kind of degree m.
The variety C(im) is called Chebyshev variety.

We have
LE® = { x € [-1, 1) (~1)"* T (x1) = . = (1) T () € {£1}}.

Note: the elements of ;(ﬁm) in the interior of the hypercube [—1,1]¢ are

exactly the singular points of the variety C(ﬁm).
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Characterize the Lissajous curves inside C(™)

Proposition

Let m € N9. There exist (not necessarily uniquely determined) integer
vectors m', m” € N¥ such that the following properties are satisfied:

Forallie {1,...,d}: m=m’m} (1a)

For allie {1,...,d}: m’ and m? are relatively prime. (1b)

The numbers mg, ceey mg are pairwise relatively prime. (1c)
d

We have lem[m] = p[mf] = [] m’. (1d)

Define the sets

d
H®) = {0,... 2p[m‘] — 1} and g@"):él{o,...,m?—n.

P. Dencker, W. Erb 8.9.2017 Lissajous-Chebyshev points

13/30



Let m, m*, m* € N satisfy the conditions (1a)-(1d), then

a) Forall (/,p) € H(m®) x B(mb), there exists a uniquely determined

i€ 1(5) and a (not necessarily unique) v € {—1,1}¢ such that
Vie{l,...,d}: =y (/— 2pimiTi = I€i> mod 2m;.

Thus, a function j : H(m*) B(ﬂb) — !(ﬁm) is well defined by

i(l,p) =i

b) Let M C {1,....d}. If i € I and 2™ € Fy, then

#{(1,p) € H=) x R®) | j(1, p) = i } = 2#™.
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We consider the following set of Lissajous curves

(m*.m") _ | p(m)
gﬁ - {E(K1+2plm§ -":Kd+2pdm§)

peR(mb)}_

Theorem

Let m,m*, m* € N? satisfy the conditions (1a)-(1d).

(m)
I

a) Using the sampling points t,;—, we have

L@ = (o™ | £e 2=, € Him) .
b) The affine Chebyshev variety C(ﬁm) can be decomposed as

= U £lo.2n).

-
Lee? ™)
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Example: MPX points in 2D

One possible decomposition of m is given by m* = (m, 1), m®> = (1, m).
The respective sets Hm) and R(m") are given by

H®) = 10,...,2m—1} and R™@) ={0} x {0,...,m—1}.

Lissajous-Chebyshev points 16/30
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Example: Padua points and Lissajous curves

If m; and my are relatively prime, the decomposition of m is given by
mt = (my, my), m” = (1,1). Then

H®) = {0,...,2mm; — 1} and R™) = {0} x {0}.

o

. o ‘.‘
N

0.5 0.5

g0 . |
~0.5 Q)
-05
: >
~1 -05 0 0.5 1 N .
X ~1 ~0.5 0 0.5 1
£E§j§§(t) = (cos 3t, cos 5t) ﬁgg:gg(t) = (cos5t, cos 6t)
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Polynomial interpolation on Q(ﬂm)

We are looking for polynomial interpolants of the form

P (x) = > o(h) Ty(x).

h
yerl®
Pehlx Z(:m) #[7]
such that the following interpolation condition is satisfied:
Pe(z™) = P (™) =), iel®. ()
d

> T,(x) = [] cos(~i arccos x;) are multivariate Chebyshev polynomials,
- i=1

> [(m

o, [, are appropriate spectral index sets.
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Examples

For the Padua points LC 00) we use
the index set I'Eg (5)3 5 @
J 4 O Q
CN AN
| \\ (5.5). N
e ° . 24 o ° ° a
6 o o .
' 1 @ ° ° °,
2/l e o e @
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For the MPX points LC®®) we can

(0.,0)"
o 1 2 3 4 5 6 i (55))

use the index set I'( 0)-
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(m)

a7

General defintion of spectral index sets [

For me N4, k € N9, v € {0,1}, we define the cubic index sets

Fi’f’?—{veNS

Viwith ki =t mod 2: 2v < m,
Viwith ki Zt mod 2: 2y < mj ’

and the spectral index sets

) Vie{l,...,d}: ¥ < m,

L. = yeNg | Vijwithij: Yi/mi + 7/ my < 1,
VI,_] with Kj 3_'5 Rj mod 2 : (’yi,’}/j) ;é (mi/2, mJ/2)

(m)

Ford=2, T}

contains all integer vectors inside a triangle.

If d > 2, the spectral index set ffg) has a polyhedral structure.
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Examples in 3D

The spectral index set fgg:g:g; for ;
the MPX points. ; ‘ 0

The spectral index set fgggi;
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We introduce a class decomposition {ff?’

} of f(ﬁm) We define

K(m)(l) = {j e{1,...,d} ’fyj/mj = max(m)m }

where max(M[v] = max {v/m; |i € {1,...,d} }.
Further, using the flip operator

( )(’Y) (V155 %=1 My = % Y1, - -+ )
we define the sets &™) () = {5}2)(1) | j e KM (y) } ,

Now, we introduce the class decomposition {fff)} as

— Ty

L ={ |xer® u{e=@) |yerd }.

The set F ) denotes a set of representatives of [I'( )]
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By this definition of the class decomposition {f(im)} we get

# [E7) = #I8 + 418 — 318 1 8 — @ — g

In special cases (as for instance the Padua points) the situation is simpler.

Proposition

Let & € Z4. The following statements are equivalent.
i) We have ged{m;, mj} <2 for all i,j € {1,...,d} with i #j.

i) All classes in [f(ﬁm)} \ {&@®)(0)} consist of precisely one element.
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Ex

amples

. =(4,4
The spectral index set [5070; for
MPX points.
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Discrete orthogonality structure
For i € 1(5@, the weights are given by

w0 = 2#M/(2p[m]) if 2™ e LCE™ N FY.

and the measure (,u(ﬁ ™) on the power set of I ) by w { = m
Denote by E(!(Em ) the set of the functions h: 1™ — C.

To prove the unisolvence of the interpolation problem (IP), we show that

d
X0 = Toy(2™) = [[ cos(yiim/m), v eI,

is an orthogonal basis of the Hilbert space E(!ﬁm)) with respect to

= > (i) m ).
IEl)
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For v € N§ and X(m) € E(!(ﬁm)) we have

if and only if

d
there exists h € Ng with v = hym;, i=1,...,d, and > b € 2Ng. (2)
i=1

d
If (2) is satisfied, then > x§7 (i) i = (—1)2i=1 hit
@
For the proof of the orthogonality we further need the product formula

(m) (m) L

Xy Xy = 5d Z X(|71+vwl\, Slvatvavgl)”
ve{-11}¢
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Main interpolation result

We consider I'I(ﬁm) = span{Tl|l € [(ﬁﬂ)} and an appropriately defined

space I:I(ﬁm) regarding (anti-)symmetries on the classes [7], see [7].

Theorem
For h € E(j(ﬁm)), the unique coefficients c,(h) such that the polynomials

PBx) = Y o Ty(x), P&(x)

ZEE(iﬂ) 767@

#[‘Y]

solve the interpolation problem (IP) in I'I(ﬁm) or I:I(ﬁm), respectively, are

= h )
Dol I

<5
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Efficient computation of the interpolating polynomial
We introduce

(m) e s p(m)
(m),. w,. 7 h(i), ifiels, (m) _ ¢
={ mi = Jm = X0, .. m},
s (4) { 0, ifiei(m)\!(im), = i:l{ }
(m) )

and the d-dimensional discrete cosine transform g~ of gém

starting with

m
A;m()"n)(im oy ig) = Zg(ﬁm)(i) cos(yuim/ms).

i=0
and, then proceeding recursively for i = 2,...,d with
Bt plin ) = D08 (o ia) cos(im/m).
ii:0

Then, we have ) -
m — AlMm
oy (h) = 1lIxy~ ||w(2m) 8 ()

Using FFT this can be done in O(p[m)] log p[m]) steps.
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Matlab toolboxes for interpolation at the nodes Eg—") are available at

https://github.com/WolfgangErb/LC2Ditp
https://github.com/WolfgangErb/LC3Ditp
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