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Outline of the talk

I Introduction
I What are Lissajous-Chebyshev points?
I Preliminary questions towards a unified theory

I Interpolation on Lissajous-Chebyshev nodes LC(m)
κ

I Some description of the involved Lissajous curves
I Interpolation and quadrature on LC(m)

κ
I Convergence and fast algorithms of the interpolation schemes
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Definition of Lissajous-Chebyshev points LC(m)
κ

We define the sets LC(m)
κ with help of the index sets

I(m)
κ = I(m)

κ,0 ∪ I(m)
κ,1 with the sets I(m)

κ,r , r ∈ {0, 1}, given by

I(m)
κ,r =

{
i ∈ Nd

0 | ∀ j : 0 ≤ ij ≤ mj and ij ≡ r + κj mod 2
}
.
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(b) Index set I(5,3,2)
(0,0,0)
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With the Chebyshev-Gauss-Lobatto points given by

z(m)
i =

(
z (m1)

i1 , . . . , z (md)
id

)
, z (m)

i = cos (iπ/m) .

we then define the Lissajous-Chebyshev points as

LC(m)
κ =

{
z(m)

i

∣∣∣ i ∈ I(m)
κ

}
.

0 1 2 3 4

0

1

2

3

4

i1

i2

z(n)
•7−→

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1

x 2

P. Dencker, W. Erb 8.9.2017 Motivation 4/30



Cardinalities of the node sets

We have

#LC(m)
κ = #I(m)

κ = #I(m)
κ,0 + #I(m)

κ,1

with

#I(m)
κ,r =

∏
i∈{1,...,d}

mi≡0 mod 2
κi≡r mod 2

mi + 2
2

×
∏

i∈{1,...,d}
mi≡0 mod 2
κi 6≡r mod 2

mi
2
×

∏
i∈{1,...,d}

mi≡1 mod 2

mi + 1
2

.
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Examples

The interpolation nodes LC(m)
κ are well-known in the literature

I Morrow-Patterson-Xu points 2D: LC(m,m)
κ [10, 11].

I Morrow-Patterson-Xu points 3D: LC(m,m,m)
κ [5].

I Padua points: LC(m)
(0,0) for m = (m,m + 1) or m = (m + 1,m) [3, 4].

I Lissajous nodes in MPI: LC(2m1,2m2)
(0,1) with m1, m2 relatively prime [9].

I Degenerate Lissajous curves: LC(m)
0 , in which m consists of

relatively prime numbers [6].

LC(m)
κ are also well-known nodes for multivariate quadrature [1].
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Observation 1:
I Polynomial interpolation on all of these point sets is very similar.
I Many of these points have a generating Lissajous curve:

`
(8,6)
(4,3)(t) = (sin 3t, sin 4t)
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in Magnetic Particle Imaging [9].

`
(6,5)
(0,0)(t) = (cos 5t, cos 6t)
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generating the Padua points [3, 4].
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Observation 2:

I Morrow-Patterson-Xu (MPX) points are more symmetric compared
to Padua points. In the literature, there is however no generating
curve given for MPX points.

I Interpolation spaces have a slightly more complicated structure [11].
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Is there a way to get a single Lissajous curve that connects these points?
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Questions considered in this tutorial

I Is there a unified interpolation framework including Padua points,
MPX points and Lissajous curves?

I Is there a single generating curve for the MPX points? What are the
alternatives?

I Are there fundamental differences in the convergence and the
implementation of the different schemes?
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Definition of d-dimensional Lissajous curves
We will consider d-dimensional Lissajous curves

`(m)
κ,u : R→ Rd

in the parametrized form

`(m)
κ,u(t) =

(
u1 cos

(
lcm[m] · t − κ1π

m1

)
, · · · , ud cos

(
lcm[m] · t − κdπ

md

))
,

where
I m = (m1, . . . ,md) ∈ Nd are ‘frequency dividers’,
I u ∈ {−1, 1}d are ‘reflection parameters’,
I lcm[m] is the least common multiple of m1, . . . ,md,
I κ = (κ1, . . . , κd) ∈ Rd specifies additional phase shifts.

The definition guarantees that in any case the minimal period of `(m)
κ,u is 2π.

We know: If the entries mi are pairwise relatively prime, then the
Lissajous curve `(m)

κ generates the points LC(m)
κ [6].
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If we try to use Lissajous curves to generate the MPX points we get
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Using `(4,4)
(0,0)(t) = (cos t, cos t) as

generating curve.
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Using `(4,4)
(0,0)(t), `(4,4)

(0,2)(t) and `(4,4)
(0,4)(t)

as generating curves.

Observation: For MPX points in general more than 1 generating
curve is needed. The number depends on m and κ.
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The union of all generating Lissajous curves forms an algebraic variety

C(m)
κ =

{
x ∈ [−1, 1]d

∣∣ (−1)κ1Tm1(x1) = . . . = (−1)κdTmd(xd)
}
,

where Tm denote the Chebyshev polynomial of first kind of degree m.
The variety C(m)

κ is called Chebyshev variety.

Theorem
We have

LC(m)
κ =

{
x ∈ [−1, 1]d

∣∣ (−1)κ1Tm1(x1) = . . . = (−1)κdTmd(xd) ∈ {±1}
}
.

Note: the elements of LC(m)
κ in the interior of the hypercube [−1, 1]d are

exactly the singular points of the variety C(m)
κ .
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Characterize the Lissajous curves inside C(m)
κ

Proposition
Let m ∈ Nd. There exist (not necessarily uniquely determined) integer
vectors m],m[ ∈ Nd such that the following properties are satisfied:

For all i ∈ {1, . . . , d}: mi = m[
im

]
i (1a)

For all i ∈ {1, . . . , d}: m[
i and m]

i are relatively prime. (1b)
The numbers m]

1, . . . ,m
]
d are pairwise relatively prime. (1c)

We have lcm[m] = p[m]] =
d∏
i=1

m]
i . (1d)

Define the sets

H(m]) = {0, . . . , 2p[m]]− 1} and R(m[) =
d
×
i=1
{0, . . . ,m[

i − 1}.
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Proposition
Let m,m],m[ ∈ Nd satisfy the conditions (1a)-(1d), then

a) For all (l ,ρ) ∈ H(m]) × R(m[), there exists a uniquely determined
i ∈ I(m)

κ and a (not necessarily unique) v ∈ {−1, 1}d such that

∀ i ∈ {1, . . . , d} : ii ≡ vi
(
l − 2ρim]

i − κi
)

mod 2mi.

Thus, a function j : H(m]) × R(m[) → I(m)
κ is well defined by

j(l ,ρ) = i .

b) Let M ⊆ {1, . . . , d}. If i ∈ I(m)
κ and z(m)

i ∈ FM, then

#{ (l ,ρ) ∈ H(m]) × R(m[) | j(l ,ρ) = i } = 2#M.
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We consider the following set of Lissajous curves

L(m],m[)
κ =

{
`

(m)
(κ1+2ρ1m]

1 ,...,κd+2ρdm]
d)
∣∣∣ ρ ∈ R(m[)

}
.

Theorem
Let m,m],m[ ∈ Nd satisfy the conditions (1a)-(1d).
a) Using the sampling points t(m)

l , we have

LC(m)
κ =

{
`(t(m)

l )
∣∣∣ ` ∈ L(m],m[)

κ , l ∈ H(m])
}
.

b) The affine Chebyshev variety C(m)
κ can be decomposed as

C(m)
κ =

⋃
`∈L(m], m[)

κ

`([0, 2π)).
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Example: MPX points in 2D

One possible decomposition of m is given by m] = (m, 1), m[ = (1,m).
The respective sets H(m]) and R(m[) are given by

H(m]) = {0, . . . , 2m − 1} and R(m[) = {0} × {0, . . . ,m − 1}.
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Example: Padua points and Lissajous curves
If m1 and m2 are relatively prime, the decomposition of m is given by
m] = (m1,m2), m[ = (1, 1). Then

H(m]) = {0, . . . , 2m1m2 − 1} and R(m[) = {0} × {0}.
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Polynomial interpolation on LC(m)
κ

We are looking for polynomial interpolants of the form

P(m)
κ,h (x) =

∑
γ∈Γ(m)

κ

cγ(h)Tγ(x),

P̃(m)
κ,h (x) =

∑
γ∈Γ(m)

κ

cγ(h)
#[γ] Tγ(x),

such that the following interpolation condition is satisfied:

P(m)
κ,h (z(m)

i ) = P̃(m)
κ,h (z(m)

i ) = h(i), i ∈ I(m)
κ . (IP)

I Tγ(x) =
d∏
i=1

cos(γi arccos xi) are multivariate Chebyshev polynomials,

I Γ(m)
κ , Γ(m)

κ are appropriate spectral index sets.
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Examples

For the Padua points LC(6,5)
(0,0) we use

the index set Γ(6,5)
(0,0).
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For the MPX points LC(5,5)
(0,0), we can

use the index set Γ(5,5)
(0,0).
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General defintion of spectral index sets Γ(m)
κ

For m ∈ Nd, κ ∈ Nd, r ∈ {0, 1}, we define the cubic index sets

Γ(m)
κ,r =

{
γ ∈ Nd

0

∣∣∣∣ ∀ i with κi ≡ r mod 2 : 2γi ≤ mi,
∀ i with κi 6≡ r mod 2 : 2γi < mi

}
,

and the spectral index sets

Γ(m)
κ =

γ ∈ Nd
0

∣∣∣∣∣∣
∀ i ∈ {1, . . . , d} : γi ≤ mi,
∀ i, j with i 6= j : γi/mi + γj/mj ≤ 1,
∀ i, j with κi 6≡ κj mod 2 : (γi, γj) 6= (mi/2,mj/2)

 .

For d = 2, Γ(m)
κ contains all integer vectors inside a triangle.

If d > 2, the spectral index set Γ(m)
κ has a polyhedral structure.
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Examples in 3D

The spectral index set Γ(4,4,4)
(0,0,0) for

the MPX points.
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The spectral index set Γ(5,4,2)
(0,0,1).
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We introduce a class decomposition
[
Γ(m)
κ

]
of Γ(m)

κ . We define

K(m)(γ) =
{
j ∈ {1, . . . , d}

∣∣∣ γj/mj = max(m)[γ]
}

where max(m)[γ] = max { γi/mi | i ∈ {1, . . . , d} }.

Further, using the flip operator

s
(m)
j (γ) = (γ1, . . . , γj−1,mj − γj, γj+1, . . . , γd)

we define the sets S(m)(γ) =
{
s

(m)
j (γ)

∣∣ j ∈ K(m)(γ)
}
.

Now, we introduce the class decomposition
[
Γ(m)
κ

]
as

[
Γ(m)
κ

]
=
{
{γ}

∣∣∣γ ∈ Γ(m)
κ,0

}
∪
{
S(m)(γ)

∣∣∣γ ∈ Γ(m)
κ,1

}
.

The set Γ(m)
κ denotes a set of representatives of

[
Γ(m)
κ

]
.
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By this definition of the class decomposition
[
Γ(m)
κ

]
we get

#
[
Γ(m)
κ

]
= #Γ(m)

κ,0 + #Γ(m)
κ,1 = #I(m)

κ,1 + #I(m)
κ,0 = #I(m)

κ = #LC(m)
κ

In special cases (as for instance the Padua points) the situation is simpler.

Proposition
Let κ ∈ Zd. The following statements are equivalent.
i) We have gcd{mi,mj} ≤ 2 for all i, j ∈ {1, . . . , d} with i 6= j.

ii) All classes in
[
Γ(m)
κ

]
\ {S(m)(0)} consist of precisely one element.
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Examples

The spectral index set Γ(4,4)
(0,0) for

MPX points.
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Discrete orthogonality structure
For i ∈ I(m)

κ , the weights are given by

w
(m)
κ,i = 2#M/(2p[m]) if z(m)

i ∈ LC(m)
κ ∩ F d

M.

and the measure ω(m)
κ on the power set of I(m)

κ by ω(m)
κ {i}) = w

(m)
κ,i .

Denote by L(I(m)
κ ) the set of the functions h : I(m)

κ → C.

To prove the unisolvence of the interpolation problem (IP), we show that

χ
(m)
γ (i) = Tγ(z(m)

i ) =
d∏
i=1

cos(γiiiπ/mi), γ ∈ Γ(m)
κ ,

is an orthogonal basis of the Hilbert space L(I(m)
κ ) with respect to

〈f , g〉
ω

(m)
κ

=
∑

i∈I(m)
κ

f (i) g(i) w
(m)
κ,i .
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Proposition
For γ ∈ Nd

0 and χ(m)
γ ∈ L(I(m)

κ ) we have∑
i∈I(m)

κ

χ
(m)
γ (i) w

(m)
κ 6= 0

if and only if

there exists h ∈ Nd
0 with γi = himi, i = 1, . . . , d, and

d∑
i=1

hi ∈ 2N0. (2)

If (2) is satisfied, then
∑

i∈I(m)
κ

χ
(m)
γ (i) w

(m)
κ = (−1)

∑d
i=1 hiκi .

For the proof of the orthogonality we further need the product formula

χ
(m)
γ χ

(m)
γ′ = 1

2d
∑

v∈{−1,1}d
χ

(m)
(|γ1+v1γ′1|,...,|γd+vdγ′d|)

.
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Main interpolation result

We consider Π(m)
κ = span{Tγ |γ ∈ Γ(m)

κ } and an appropriately defined
space Π̃(m)

κ regarding (anti-)symmetries on the classes [γ], see [7].

Theorem
For h ∈ L(I(m)

κ ), the unique coefficients cγ(h) such that the polynomials

P(m)
κ,h (x) =

∑
γ∈Γ(m)

κ

cγ(h)Tγ(x), P̃(m)
κ,h (x) =

∑
γ∈Γ(m)

κ

cγ(h)
#[γ] Tγ(x),

solve the interpolation problem (IP) in Π(m)
κ or Π̃(m)

κ , respectively, are

cγ(h) = 1
‖χ(m)
γ ‖2

ω
(m)
κ

〈h, χ(m)
γ 〉ω(m)

κ
.
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Efficient computation of the interpolating polynomial
We introduce

g (m)
κ (i) =

{
w

(m)
κ,i h(i), if i ∈ I(m)

κ ,

0, if i ∈ J(m) \ I(m)
κ ,

J(m) =
d
"
i=1
{0, . . . ,mi},

and the d-dimensional discrete cosine transform ĝ (m)
κ,γ of g (m)

κ starting with

ĝ (m)
κ,(γ1)(i2, . . . , id) =

m1∑
ii=0

g (m)
κ (i) cos(γ1i1π/m1).

and, then proceeding recursively for i = 2, . . . , d with

ĝ (m)
κ,(γ1,...,γi)(ii+1, . . . , id) =

mi∑
ii=0

ĝ (m)
κ,(γ1,...,γi−1)(ii, . . . , id) cos(γiiiπ/mi).

Then, we have
cγ(h) = ‖χ(m)

γ ‖−2
ω

(m)
κ

ĝ (m)
κ (γ).

Using FFT this can be done in O(p[m] log p[m]) steps.
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Matlab toolboxes for interpolation at the nodes LC(m)
κ are available at

https://github.com/WolfgangErb/LC2Ditp
https://github.com/WolfgangErb/LC3Ditp
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