

A unifying framework for interpolation on general Lissajous-Chebyshev points

P. Dencker, W. Erb

Tutorial talk given by W. Erb at the Dolomites Research Week on Approximation Alba di Canazei (Trento, Italy)

September 4-8 2017

The theory of this talk is published in [7].

The speaker gratefully acknowledges the support of RITA (Rete Italiana di Approssimazione) for the possibility to give this tutorial.

P. Dencker, W. Erb 8.9.2017 1/30

Outline of the talk

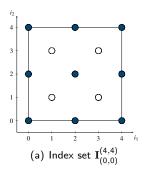
- ► Introduction
 - What are Lissajous-Chebyshev points?
 - Preliminary questions towards a unified theory
- ▶ Interpolation on Lissajous-Chebyshev nodes $\underline{\mathsf{LC}}_{\kappa}^{(\underline{m})}$
 - ► Some description of the involved Lissajous curves
 - ▶ Interpolation and quadrature on $\underline{LC}_{\kappa}^{(\underline{m})}$
 - ► Convergence and fast algorithms of the interpolation schemes

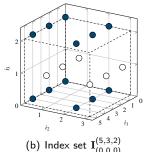
P. Dencker, W. Erb 8.9.2017 Motivation 2/30

Definition of Lissajous-Chebyshev points $\underline{\mathsf{LC}}_{\kappa}^{(\underline{m})}$

We define the sets $\underline{LC}_{\kappa}^{(\underline{m})}$ with help of the index sets

$$\begin{array}{l} \underline{\mathbf{I}}_{\underline{\kappa}}^{(\underline{m})} = \underline{\mathbf{I}}_{\underline{\kappa},0}^{(\underline{m})} \cup \underline{\mathbf{I}}_{\underline{\kappa},1}^{(\underline{m})} \text{ with the sets } \underline{\mathbf{I}}_{\underline{\kappa},\mathfrak{r}}^{(\underline{m})}, \ \mathfrak{r} \in \{0,1\}, \ \text{given by} \\ \underline{\mathbf{I}}_{\underline{\kappa},\mathfrak{r}}^{(\underline{m})} = \left\{ \underline{\boldsymbol{i}} \in \mathbb{N}_0^d \mid \forall \, j: \ 0 \leq \mathit{i}_j \leq \mathit{m}_j \ \text{and} \ \mathit{i}_j \equiv \mathfrak{r} + \kappa_j \mod 2 \right\}. \end{array}$$





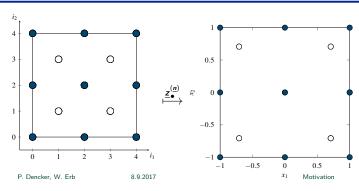
3/30

P. Dencker, W. Erb 8 9 2017 Motivation With the Chebyshev-Gauss-Lobatto points given by

$$\underline{z_{\underline{i}}^{(\underline{m})}} = \left(z_{i_1}^{(m_1)}, \dots, z_{i_d}^{(m_d)}\right), \quad z_i^{(m)} = \cos\left(i\pi/m\right).$$

we then define the Lissajous-Chebyshev points as

$$\underline{\mathsf{LC}}_{\underline{\kappa}}^{(\underline{m})} = \left\{ \left. \underline{\mathbf{z}}_{\underline{i}}^{(\underline{m})} \; \middle| \; \underline{i} \in \underline{\mathsf{I}}_{\underline{\kappa}}^{(\underline{m})} \right. \right\}.$$



Cardinalities of the node sets

We have

$$\#\underline{\mathsf{LC}}_{\underline{\kappa}}^{(\underline{m})} = \#\underline{\mathsf{I}}_{\underline{\kappa}}^{(\underline{m})} = \#\underline{\mathsf{I}}_{\underline{\kappa},0}^{(\underline{m})} + \#\underline{\mathsf{I}}_{\underline{\kappa},1}^{(\underline{m})}$$

with

$$\#\underline{\boldsymbol{I}}_{\underline{\kappa},\tau}^{(\underline{\boldsymbol{m}})} = \prod_{\substack{i \in \{1,\dots,d\} \\ m_i \equiv 0 \mod 2 \\ \kappa_i \equiv \tau \mod 2}} \underline{m_i + 2}_{\substack{i \in \{1,\dots,d\} \\ m_i \equiv 0 \mod 2 \\ \kappa_i \not\equiv \tau \mod 2}} \times \prod_{\substack{i \in \{1,\dots,d\} \\ m_i \equiv 1 \mod 2 \\ m_i \equiv 1 \mod 2}} \underline{m_i + 1}_2.$$

P. Dencker, W. Erb 8.9.2017 Motivation 5/30

Examples

The interpolation nodes $\underline{\mathbf{LC}}_{\kappa}^{(\underline{m})}$ are well-known in the literature

- Morrow-Patterson-Xu points 2D: $\underline{\mathbf{LC}}_{\kappa}^{(m,m)}$ [10, 11].
- ▶ Morrow-Patterson-Xu points 3D: $\underline{LC}_{\underline{\kappa}}^{(m,m,m)}$ [5].
- ▶ Padua points: $\underline{LC}_{(0,0)}^{(\underline{m})}$ for $\underline{m} = (m, m+1)$ or $\underline{m} = (m+1, m)$ [3, 4].
- Lissajous nodes in MPI: $\underline{\mathbf{LC}}_{(0,1)}^{(2m_1,2m_2)}$ with m_1 , m_2 relatively prime [9].
- ▶ Degenerate Lissajous curves: $\underline{LC_0^{(\underline{m})}}$, in which \underline{m} consists of relatively prime numbers [6].

 $\underline{\mathbf{LC}_{\underline{\kappa}}^{(\underline{m})}}$ are also well-known nodes for multivariate quadrature [1].

P. Dencker, W. Erb 8.9.2017 Motivation 6/30

Observation 1:

- ▶ Polynomial interpolation on all of these point sets is very similar.
- ▶ Many of these points have a generating Lissajous curve:

$$\underbrace{\ell_{(4,3)}^{(8,6)}(t) = (\sin 3t, \sin 4t)}_{0.5}$$

Non-degenerate Lissajous curve used in Magnetic Particle Imaging [9].

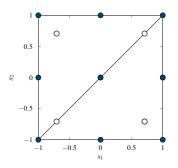
$$\underline{\ell}_{(0,0)}^{(6,5)}(t) = (\cos 5t, \cos 6t)$$

Degenerate Lissajous curve generating the Padua points [3, 4].

P. Dencker, W. Erb 8.9.2017 Motivation 7/30

Observation 2:

- Morrow-Patterson-Xu (MPX) points are more symmetric compared to Padua points. In the literature, there is however no generating curve given for MPX points.
- ▶ Interpolation spaces have a slightly more complicated structure [11].



Is there a way to get a single Lissajous curve that connects these points?

P. Dencker, W. Erb 8.9.2017 Motivation 8/30

Questions considered in this tutorial

- ► Is there a unified interpolation framework including Padua points, MPX points and Lissajous curves?
- Is there a single generating curve for the MPX points? What are the alternatives?
- ► Are there fundamental differences in the convergence and the implementation of the different schemes?

P. Dencker, W. Erb 8.9.2017 Motivation 9/30

Definition of d-dimensional Lissajous curves

We will consider d-dimensional Lissajous curves

$$\underline{\ell}_{\kappa,u}^{(\underline{m})}: \mathbb{R} \to \mathbb{R}^{\mathsf{d}}$$

in the parametrized form

$$\underline{\ell_{\underline{\kappa},\underline{u}}^{(\underline{m})}}(t) = \left(u_1 \cos\left(\frac{\operatorname{lcm}[\underline{m}] \cdot t - \kappa_1 \pi}{m_1}\right), \cdots, u_d \cos\left(\frac{\operatorname{lcm}[\underline{m}] \cdot t - \kappa_d \pi}{m_d}\right)\right),$$

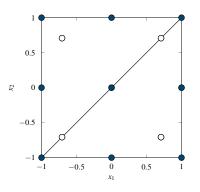
where

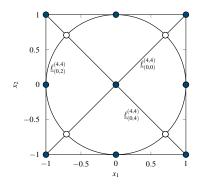
- $\underline{\boldsymbol{m}} = (m_1, \dots, m_{\sf d}) \in \mathbb{N}^{\sf d}$ are 'frequency dividers',
- $ightharpoonup \underline{m{u}} \in \{-1,1\}^{\mathsf{d}}$ are 'reflection parameters',
- ▶ $lcm[\underline{m}]$ is the least common multiple of m_1, \ldots, m_d ,
- $\underline{\kappa} = (\kappa_1, \dots, \kappa_d) \in \mathbb{R}^d$ specifies additional phase shifts.

The definition guarantees that in any case the minimal period of $\underline{\ell}_{\kappa,u}^{(\underline{m})}$ is 2π .

<u>We know:</u> If the entries m_i are pairwise relatively prime, then the Lissajous curve $\underline{\ell}_{\kappa}^{(\underline{m})}$ generates the points $\underline{\mathbf{LC}_{\kappa}^{(\underline{m})}}$ [6].

If we try to use Lissajous curves to generate the MPX points we get





Using $\underline{\ell}_{(0,0)}^{(4,4)}(t) = (\cos t, \cos t)$ as generating curve.

Using
$$\underline{\ell}_{(0,0)}^{(4,4)}(t)$$
, $\underline{\ell}_{(0,2)}^{(4,4)}(t)$ and $\underline{\ell}_{(0,4)}^{(4,4)}(t)$ as generating curves.

11/30

<u>Observation:</u> For MPX points in general more than 1 generating curve is needed. The number depends on \underline{m} and $\underline{\kappa}$.

P. Dencker, W. Erb 8.9.2017 Lissajous-Chebyshev points

The union of all generating Lissajous curves forms an algebraic variety

$$C_{\underline{\kappa}}^{(\underline{m})} = \left\{ \ \underline{\boldsymbol{x}} \in [-1,1]^{\mathsf{d}} \ \middle| \ (-1)^{\kappa_1} T_{m_1}(x_1) = \ldots = (-1)^{\kappa_{\mathsf{d}}} T_{m_{\mathsf{d}}}(x_{\mathsf{d}}) \ \right\},$$

where T_m denote the Chebyshev polynomial of first kind of degree m. The variety $\mathcal{C}_{\underline{\kappa}}^{(\underline{m})}$ is called Chebyshev variety.

Theorem

We have

$$\underline{\mathbf{LC}}_{\underline{\kappa}}^{(\underline{m})} = \Big\{ \underline{\mathbf{x}} \in [-1,1]^{\mathsf{d}} \big| (-1)^{\kappa_1} T_{m_1}(x_1) = \ldots = (-1)^{\kappa_{\mathsf{d}}} T_{m_{\mathsf{d}}}(x_{\mathsf{d}}) \in \{\pm 1\} \Big\}.$$

Note: the elements of $\underline{\mathbf{LC}_{\underline{\kappa}}^{(\underline{m})}}$ in the interior of the hypercube $[-1,1]^{\mathrm{d}}$ are exactly the singular points of the variety $\mathcal{C}_{\underline{\kappa}}^{(\underline{m})}$.

Characterize the Lissajous curves inside $\mathcal{C}_{\underline{\kappa}}^{(\underline{m})}$

Proposition

Let $\underline{\boldsymbol{m}} \in \mathbb{N}^d$. There exist (not necessarily uniquely determined) integer vectors $\underline{\boldsymbol{m}}^\sharp, \underline{\boldsymbol{m}}^\flat \in \mathbb{N}^d$ such that the following properties are satisfied:

For all
$$i \in \{1, \dots, d\}$$
: $m_i = m_i^{\flat} m_i^{\sharp}$ (1a)

For all
$$i \in \{1, ..., d\}$$
: m_i^{\flat} and m_i^{\sharp} are relatively prime. (1b)

The numbers
$$m_1^{\sharp}, \dots, m_{\mathsf{d}}^{\sharp}$$
 are pairwise relatively prime. (1c)

We have
$$\operatorname{lcm}[\underline{\boldsymbol{m}}] = \operatorname{p}[\underline{\boldsymbol{m}}^{\sharp}] = \prod_{i=1}^{d} m_{i}^{\sharp}.$$
 (1d)

Define the sets

$$\textit{H}^{(\underline{\textit{m}}^{\sharp})} = \{0, \dots, 2p[\underline{\textit{m}}^{\sharp}] - 1\} \quad \text{and} \quad \underline{\textit{R}}^{(\underline{\textit{m}}^{\flat})} = \mathop{\times}\limits_{i=1}^{d} \{0, \dots, \textit{m}_{i}^{\flat} - 1\}.$$

Proposition

Let $\underline{\boldsymbol{m}},\underline{\boldsymbol{m}}^{\sharp},\underline{\boldsymbol{m}}^{\flat}\in\mathbb{N}^{d}$ satisfy the conditions (1a)-(1d), then

a) For all $(I,\underline{\rho}) \in H^{(\underline{m}^{\sharp})} \times \underline{R}^{(\underline{m}^{\flat})}$, there exists a uniquely determined $\underline{\boldsymbol{i}} \in \underline{I}_{\underline{\kappa}}^{(\underline{m})}$ and a (not necessarily unique) $\underline{\boldsymbol{v}} \in \{-1,1\}^d$ such that

$$\forall\, i\in\{1,\ldots,d\}:\quad \textit{i}_{i}\equiv\textit{v}_{i}\left(\textit{I}-2\rho_{i}\textit{m}_{i}^{\sharp}-\kappa_{i}\right)\quad \text{mod }2\textit{m}_{i}.$$

Thus, a function $\underline{\underline{j}}: H^{(\underline{m}^{\sharp})} \times \underline{\underline{R}}^{(\underline{m}^{\flat})} \to \underline{\underline{I}}^{(\underline{m})}_{\underline{\kappa}}$ is well defined by

$$\underline{\underline{\textbf{\textit{j}}}}(l,\underline{\rho}) = \underline{\underline{\textbf{\textit{i}}}}.$$

b) Let M \subseteq $\{1,\ldots,\mathsf{d}\}$. If $\underline{\emph{i}}\in\underline{\textbf{l}}_{\underline{\kappa}}^{(\underline{\emph{m}})}$ and $\underline{\emph{z}}_{\underline{\emph{i}}}^{(\underline{\emph{m}})}\in\underline{\emph{F}}_{\mathsf{M}}$, then

$$\#\{(I,\underline{\rho})\in H^{(\underline{m}^{\sharp})}\times\underline{\mathbf{R}}^{(\underline{m}^{\flat})}\,|\,\underline{\mathbf{j}}(I,\underline{\rho})=\underline{\mathbf{i}}\,\}=2^{\#\mathsf{M}}.$$

We consider the following set of Lissajous curves

$$\underline{\mathfrak{L}}_{\underline{\kappa}}^{(\underline{\boldsymbol{m}}^{\sharp},\,\underline{\boldsymbol{m}}^{\flat})} = \left\{ \underline{\boldsymbol{\ell}}_{\left(\kappa_{1}+2\rho_{1}m_{1}^{\sharp},...,\kappa_{d}+2\rho_{d}m_{d}^{\sharp}\right)}^{(\underline{\boldsymbol{m}}^{\flat})} \,\middle|\, \underline{\boldsymbol{\rho}} \in \underline{\boldsymbol{R}}^{(\underline{\boldsymbol{m}}^{\flat})} \right\}.$$

Theorem

Let $\underline{\boldsymbol{m}},\underline{\boldsymbol{m}}^{\sharp},\underline{\boldsymbol{m}}^{\flat}\in\mathbb{N}^{d}$ satisfy the conditions (1a)-(1d).

a) Using the sampling points $t_l^{(\underline{m})}$, we have

$$\underline{\textbf{LC}}_{\underline{\kappa}}^{(\underline{m})} = \left\{ \, \underline{\ell}(t_{l}^{(\underline{m})}) \, \, \middle| \, \, \underline{\ell} \in \underline{\mathfrak{L}}_{\underline{\kappa}}^{(\underline{m}^{\sharp},\,\underline{m}^{\flat})}, \, \mathit{I} \in \mathit{H}^{(\underline{m}^{\sharp})} \, \right\}.$$

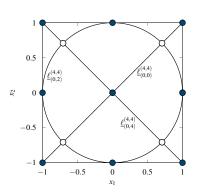
b) The affine Chebyshev variety $\mathcal{C}^{(\underline{m})}_{\underline{\kappa}}$ can be decomposed as

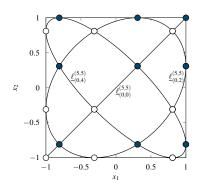
$$\mathcal{C}^{(\underline{m})}_{\underline{\kappa}} = \bigcup_{\underline{\ell} \in \underline{\mathfrak{L}}^{(\underline{m}^{\sharp}, \underline{m}^{\flat})}_{\underline{\kappa}}} \underline{\ell}([0, 2\pi)).$$

Example: MPX points in 2D

One possible decomposition of $\underline{\boldsymbol{m}}$ is given by $\underline{\boldsymbol{m}}^{\sharp}=(m,1),\ \underline{\boldsymbol{m}}^{\flat}=(1,m).$ The respective sets $H^{(\underline{\boldsymbol{m}}^{\sharp})}$ and $R^{(\underline{\boldsymbol{m}}^{\flat})}$ are given by

$$H^{(\underline{m}^{\sharp})} = \{0, \dots, 2m-1\} \text{ and } \underline{R}^{(\underline{m}^{\flat})} = \{0\} \times \{0, \dots, m-1\}.$$

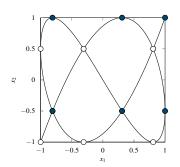




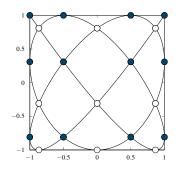
Example: Padua points and Lissajous curves

If m_1 and m_2 are relatively prime, the decomposition of $\underline{\boldsymbol{m}}$ is given by $\underline{\boldsymbol{m}}^{\sharp}=(m_1,m_2),\ \underline{\boldsymbol{m}}^{\flat}=(1,1).$ Then

$$H^{(\underline{\boldsymbol{m}}^{\sharp})} = \{0, \dots, 2m_1m_2 - 1\}$$
 and $\underline{\boldsymbol{R}}^{(\underline{\boldsymbol{m}}^{\flat})} = \{0\} \times \{0\}.$



$$\underline{\ell}_{(0,0)}^{(5,3)}(t) = (\cos 3t, \cos 5t)$$
P. Dencker, W. Erb
8.9.2017



$$\underline{\ell}_{(0,0)}^{(6,5)}(t) = (\cos 5t, \cos 6t)$$

Polynomial interpolation on $\underline{\mathsf{LC}}_{\kappa}^{(\underline{m})}$

We are looking for polynomial interpolants of the form

$$P_{\underline{\kappa},h}^{(\underline{m})}(\underline{x}) = \sum_{\underline{\gamma} \in \underline{\Gamma}_{\underline{\kappa}}^{(\underline{m})}} c_{\underline{\gamma}}(h) T_{\underline{\gamma}}(\underline{x}),$$

$$c_{\underline{\gamma}}(h)$$

$$\tilde{P}_{\underline{\kappa},h}^{(\underline{m})}(\underline{\mathbf{x}}) = \sum_{\underline{\gamma} \in \overline{\underline{\Gamma}}_{\underline{\kappa}}^{(\underline{m})}} \frac{c_{\underline{\gamma}}(h)}{\underline{\#}[\underline{\gamma}]} \, T_{\underline{\gamma}}(\underline{\mathbf{x}}),$$

such that the following interpolation condition is satisfied:

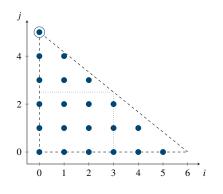
$$P_{\underline{\kappa},h}^{(\underline{m})}(\underline{z}_{\underline{i}}^{(\underline{m})}) = \tilde{P}_{\underline{\kappa},h}^{(\underline{m})}(\underline{z}_{\underline{i}}^{(\underline{m})}) = h(\underline{i}), \qquad \underline{i} \in \underline{I}_{\underline{\kappa}}^{(\underline{m})}. \tag{IP}$$

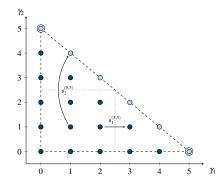
- ▶ $T_{\underline{\gamma}}(\underline{x}) = \prod_{i=1}^{d} \cos(\gamma_i \arccos x_i)$ are multivariate Chebyshev polynomials,
- ▶ $\underline{\Gamma}_{\underline{\kappa}}^{(\underline{m})}$, $\underline{\overline{\Gamma}}_{\underline{\kappa}}^{(\underline{m})}$ are appropriate spectral index sets.

P. Dencker, W. Erb

Examples

For the Padua points $\underline{\mathbf{LC}}_{(0,0)}^{(6,5)}$ we use the index set $\underline{\mathbf{\Gamma}}_{(0,0)}^{(6,5)}$.





For the MPX points $\underline{\mathbf{LC}}_{(0,0)}^{(5,5)}$, we can use the index set $\overline{\underline{\mathbf{\Gamma}}}_{(0,0)}^{(5,5)}$.

General defintion of spectral index sets $\overline{\underline{\Gamma}}_{\underline{\kappa}}^{(\underline{m})}$

For $\underline{\textbf{\textit{m}}}\in\mathbb{N}^d$, $\underline{\textbf{\textit{\kappa}}}\in\mathbb{N}^d$, $\mathfrak{r}\in\{0,1\}$, we define the cubic index sets

$$\underline{\boldsymbol{\Gamma}}_{\underline{\kappa},\mathfrak{r}}^{(\underline{\boldsymbol{m}})} = \left\{ \underline{\gamma} \in \mathbb{N}_0^d \left| \begin{array}{ccc} \forall \, \mathrm{i} \, \, \mathrm{with} \, \, \kappa_i \equiv \mathfrak{r} & \mathrm{mod} \, \, 2: \, \, 2\gamma_i \leq m_i, \\ \forall \, \mathrm{i} \, \, \mathrm{with} \, \, \kappa_i \not \equiv \mathfrak{r} & \mathrm{mod} \, \, 2: \, \, 2\gamma_i < m_i \end{array} \right\},$$

and the spectral index sets

$$\overline{\underline{\Gamma}}_{\underline{\kappa}}^{(\underline{m})} = \left\{ \begin{array}{ll} \forall \, i \in \{1, \dots, d\} : & \gamma_i \leq m_i, \\ \forall \, i, j \, \text{with} \, \, i \neq j : & \gamma_i/m_i + \gamma_j/m_j \leq 1, \\ \forall \, i, j \, \text{with} \, \, \kappa_i \not\equiv \kappa_j \quad \text{mod} \, \, 2 : \quad (\gamma_i, \gamma_j) \neq (m_i/2, m_j/2) \end{array} \right\}.$$

For d=2, $\overline{\underline{\Gamma}}_{\kappa}^{(\underline{m})}$ contains all integer vectors inside a triangle.

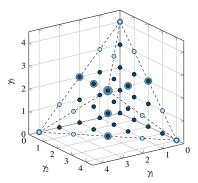
If d > 2, the spectral index set $\overline{\underline{\Gamma}}_{\underline{\kappa}}^{(\underline{m})}$ has a polyhedral structure.

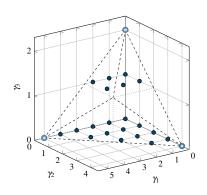
P. Dencker, W. Erb 8.9.2017 Polynomial Interpolation

20/30

Examples in 3D

The spectral index set $\overline{\underline{\Gamma}}_{(0,0,0)}^{(4,4,4)}$ for the MPX points.





The spectral index set $\overline{\underline{\Gamma}}_{(0,0,1)}^{(5,4,2)}$.

We introduce a class decomposition $\left[\underline{\underline{\Gamma}}_{\underline{\kappa}}^{(\underline{m})}\right]$ of $\underline{\underline{\Gamma}}_{\underline{\kappa}}^{(\underline{m})}$. We define

$$\mathsf{K}^{(\underline{\textit{m}})}(\underline{\gamma}) = \Big\{\, \mathsf{j} \in \{1,\ldots,\mathsf{d}\} \,\, \Big|\, \gamma_{\mathsf{j}}/\textit{m}_{\mathsf{j}} = \mathsf{max}^{(\underline{\textit{m}})}[\underline{\gamma}] \,\, \Big\}$$

where $\max^{(\underline{m})}[\underline{\gamma}] = \max \{ \gamma_i/m_i \mid i \in \{1, \dots, d\} \}.$

Further, using the flip operator

$$\mathfrak{s}_{j}^{(\underline{m})}(\underline{\gamma}) = (\gamma_{1}, \ldots, \gamma_{j-1}, m_{j} - \gamma_{j}, \gamma_{j+1}, \ldots, \gamma_{d})$$

we define the sets $\mathfrak{S}^{(\underline{m})}(\underline{\gamma}) = \left\{ \mathfrak{s}_{j}^{(\underline{m})}(\underline{\gamma}) \mid j \in \mathsf{K}^{(\underline{m})}(\underline{\gamma}) \right\}.$

Now, we introduce the class decomposition $\left[\overline{\underline{\Gamma}}_{\underline{\kappa}}^{(\underline{m})}\right]$ as

$$\left[\overline{\underline{\Gamma}}_{\underline{\kappa}}^{(\underline{m})}\right] = \left\{ \; \{\underline{\gamma}\} \; \left| \; \underline{\gamma} \in \underline{\underline{\Gamma}}_{\underline{\kappa},0}^{(\underline{m})} \; \right\} \cup \left\{ \; \mathfrak{S}^{(\underline{m})}(\underline{\gamma}) \; \left| \; \underline{\gamma} \in \underline{\underline{\Gamma}}_{\underline{\kappa},1}^{(\underline{m})} \; \right\} \; . \right.$$

The set $\underline{\Gamma}_{\underline{\kappa}}^{(\underline{m})}$ denotes a set of representatives of $\left[\overline{\underline{\Gamma}}_{\underline{\kappa}}^{(\underline{m})}\right]$.

P. Dencker, W. Erb 8.9.2017 Polynomial Interpolation

22/30

By this definition of the class decomposition $\left[\overline{\underline{\Gamma}}_{\underline{\kappa}}^{(\underline{m})}
ight]$ we get

$$\#\left[\overline{\underline{\Gamma}}_{\underline{\kappa}}^{(\underline{m})}\right] = \#\underline{\underline{\Gamma}}_{\underline{\kappa},0}^{(\underline{m})} + \#\underline{\underline{\Gamma}}_{\underline{\kappa},1}^{(\underline{m})} = \#\underline{\underline{I}}_{\underline{\kappa},1}^{(\underline{m})} + \#\underline{\underline{I}}_{\underline{\kappa},0}^{(\underline{m})} = \#\underline{\underline{I}}_{\underline{\kappa}}^{(\underline{m})} = \#\underline{\underline{LC}}_{\underline{\kappa}}^{(\underline{m})}$$

In special cases (as for instance the Padua points) the situation is simpler.

Proposition

Let $\underline{\kappa} \in \mathbb{Z}^d$. The following statements are equivalent.

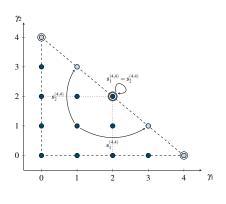
- i) We have $gcd\{m_i, m_j\} \le 2$ for all $i, j \in \{1, ..., d\}$ with $i \ne j$.
- ii) All classes in $\left[\overline{\underline{\Gamma}}_{\underline{\kappa}}^{(\underline{m})}\right]\setminus\{\mathfrak{S}^{(\underline{m})}(\underline{\mathbf{0}})\}$ consist of precisely one element.

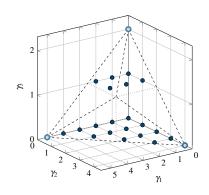
P. Dencker, W. Erb 8.9.2017 Polynomial Interpolation

23/30

Examples

The spectral index set $\overline{\underline{\Gamma}}_{(0,0)}^{(4,4)}$ for MPX points.





The spectral index set $\overline{\underline{\Gamma}}_{(0,0,1)}^{(5,4,2)}$.

P. Dencker, W. Erb

Discrete orthogonality structure

For $\underline{i} \in \underline{I}_{\underline{\kappa}}^{(\underline{m})}$, the weights are given by

$$\mathfrak{w}_{\underline{\kappa},\underline{i}}^{(\underline{m})} = 2^{\# \mathsf{M}}/(2\mathsf{p}[\underline{m}]) \quad \text{if} \ \ \underline{\mathbf{z}}_{\underline{i}}^{(\underline{m})} \in \underline{\mathbf{LC}}_{\underline{\kappa}}^{(\underline{m})} \cap \underline{\mathbf{F}}_{\mathsf{M}}^{\mathsf{d}}.$$

and the measure $\omega_{\underline{\kappa}}^{(\underline{m})}$ on the power set of $\underline{\mathbf{I}}_{\underline{\kappa}}^{(\underline{m})}$ by $\omega_{\underline{\kappa}}^{(\underline{m})}\{\underline{i}\})=\mathfrak{w}_{\underline{\kappa},\underline{i}}^{(\underline{m})}$.

Denote by $\mathcal{L}(\underline{\mathbf{l}}_{\kappa}^{(\underline{m})})$ the set of the functions $h:\underline{\mathbf{l}}_{\kappa}^{(\underline{m})}\to\mathbb{C}.$

To prove the unisolvence of the interpolation problem (IP), we show that

$$\chi_{\underline{\gamma}}^{(\underline{m})}(\underline{i}) = T_{\underline{\gamma}}(\underline{z}_{\underline{i}}^{(\underline{m})}) = \prod_{i=1}^{d} \cos(\gamma_i i_i \pi/m_i), \qquad \underline{\gamma} \in \underline{\Gamma}_{\underline{\kappa}}^{(\underline{m})},$$

is an orthogonal basis of the Hilbert space $\mathcal{L}(\mathbf{I}_{\underline{\kappa}}^{(\underline{m})})$ with respect to

$$\langle f, g \rangle_{\omega_{\underline{\kappa}}^{(\underline{m})}} = \sum_{\underline{i} \in \underline{l}_{\underline{\kappa}}^{(\underline{m})}} f(\underline{i}) \ \overline{g(\underline{i})} \ \mathfrak{w}_{\underline{\kappa}, \underline{i}}^{(\underline{m})}.$$

Proposition

For $\underline{\gamma} \in \mathbb{N}_0^{\sf d}$ and $\chi_{\underline{\gamma}}^{(\underline{m})} \in \mathcal{L}(\underline{\mathbf{l}}_{\kappa}^{(\underline{m})})$ we have

$$\sum_{\underline{\boldsymbol{i}}\in I_{\underline{\boldsymbol{i}}}^{(\underline{\boldsymbol{m}})}}\chi_{\underline{\boldsymbol{\gamma}}}^{(\underline{\boldsymbol{m}})}(\underline{\underline{\boldsymbol{i}}})\ \mathfrak{w}_{\underline{\boldsymbol{\kappa}}}^{(\underline{\boldsymbol{m}})}\neq 0$$

if and only if

there exists
$$\underline{h} \in \mathbb{N}_0^d$$
 with $\gamma_i = h_i m_i$, $i = 1, \ldots, d$, and $\sum_{i=1}^d h_i \in 2\mathbb{N}_0$. (2)

If (2) is satisfied, then
$$\sum_{i \in I_{\underline{\kappa}}^{(\underline{m})}} \chi_{\underline{\gamma}}^{(\underline{m})}(\underline{i}) \ \mathfrak{w}_{\underline{\kappa}}^{(\underline{m})} = (-1)^{\sum_{i=1}^{d} h_i \kappa_i}.$$

For the proof of the orthogonality we further need the product formula

$$\chi_{\underline{\gamma}}^{(\underline{m})}\chi_{\underline{\gamma}'}^{(\underline{m})} = \frac{1}{2^{\mathsf{d}}} \sum_{\mathbf{v} \in \{-1,1\}^{\mathsf{d}}} \chi_{(|\gamma_1 + \nu_1 \gamma_1'|, \dots, |\gamma_{\mathsf{d}} + \nu_{\mathsf{d}} \gamma_{\mathsf{d}}'|)}^{(\underline{m})}.$$

P. Dencker, W. Erb

Main interpolation result

We consider $\Pi_{\underline{\kappa}}^{(\underline{m})} = \operatorname{span}\{T_{\underline{\gamma}} \mid \underline{\gamma} \in \underline{\Gamma}_{\underline{\kappa}}^{(\underline{m})}\}$ and an appropriately defined space $\tilde{\Pi}_{\underline{\kappa}}^{(\underline{m})}$ regarding (anti-)symmetries on the classes $[\underline{\gamma}]$, see [7].

Theorem

For $h \in \mathcal{L}(\underline{\mathbf{l}}_{\underline{\kappa}}^{(\underline{m})})$, the unique coefficients $c_{\underline{\gamma}}(h)$ such that the polynomials

$$P_{\underline{\kappa},h}^{(\underline{m})}(\underline{x}) = \sum_{\underline{\gamma} \in \underline{\Gamma}_{\underline{\kappa}}^{(\underline{m})}} c_{\underline{\gamma}}(h) T_{\underline{\gamma}}(\underline{x}), \quad \tilde{P}_{\underline{\kappa},h}^{(\underline{m})}(\underline{x}) = \sum_{\underline{\gamma} \in \overline{\Gamma}_{\underline{\kappa}}^{(\underline{m})}} \frac{c_{\underline{\gamma}}(h)}{\#[\underline{\gamma}]} T_{\underline{\gamma}}(\underline{x}),$$

solve the interpolation problem (IP) in $\Pi_{\overline{\kappa}}^{(m{m})}$ or $ilde{\Pi}_{m{\kappa}}^{(m{m})}$, respectively, are

$$c_{\underline{\gamma}}(h) = \frac{1}{\|\chi_{\underline{\gamma}}^{(\underline{m})}\|_{\omega_{\underline{\kappa}}^{(\underline{m})}}^2} \langle h, \chi_{\underline{\gamma}}^{(\underline{m})} \rangle_{\omega_{\underline{\kappa}}^{(\underline{m})}}.$$

Efficient computation of the interpolating polynomial

We introduce

$$g_{\underline{\kappa}}^{(\underline{m})}(\underline{\textbf{\textit{i}}}) = \left\{ \begin{array}{cc} \mathfrak{w}_{\underline{\kappa},\underline{\textbf{\textit{i}}}}^{(\underline{m})} h(\underline{\textbf{\textit{i}}}), & \text{ if } \underline{\textbf{\textit{i}}} \in \underline{\textbf{\textit{I}}}_{\underline{\kappa}}^{(\underline{m})}, \\ 0, & \text{ if } \underline{\textbf{\textit{i}}} \in \underline{\textbf{\textit{J}}}^{(\underline{m})} \setminus \underline{\textbf{\textit{I}}}_{\underline{\kappa}}^{(\underline{m})}, \end{array} \right. \underline{\textbf{\textit{J}}}^{(\underline{m})} = \underset{i=1}{\overset{d}{\times}} \{0,\ldots,m_i\},$$

and the d-dimensional discrete cosine transform $\hat{g}_{\underline{\kappa},\gamma}^{(\underline{m})}$ of $g_{\underline{\kappa}}^{(\underline{m})}$ starting with

$$\hat{g}_{\underline{\kappa},(\gamma_1)}^{(\underline{m})}(i_2,\ldots,i_d) = \sum_{i=0}^{m_1} g_{\underline{\kappa}}^{(\underline{m})}(\underline{i}) \cos(\gamma_1 i_1 \pi/m_1).$$

and, then proceeding recursively for $i=2,\ldots,d$ with

$$\hat{g}_{\underline{\kappa},(\gamma_1,\ldots,\gamma_i)}^{(\underline{m})}(i_{i+1},\ldots,i_d) = \sum_{i=0}^{m_i} \hat{g}_{\underline{\kappa},(\gamma_1,\ldots,\gamma_{i-1})}^{(\underline{m})}(i_i,\ldots,i_d) \cos(\gamma_i i_i \pi/m_i).$$

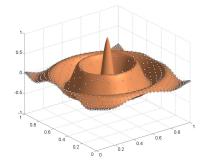
Then, we have

$$c_{\underline{\gamma}}(h) = \|\chi_{\underline{\gamma}}^{(\underline{m})}\|_{\omega_{\kappa}^{(\underline{m})}}^{-2} \hat{g}_{\underline{\kappa}}^{(\underline{m})}(\underline{\gamma}).$$

Using FFT this can be done in $\mathcal{O}(p[\underline{m}] \log p[\underline{m}])$ steps.

P. Dencker, W. Erb





29/30

Matlab toolboxes for interpolation at the nodes $\underline{\mathsf{LC}}_{\underline{\kappa}}^{(\underline{m})}$ are available at

 $https://github.com/WolfgangErb/LC2Ditp\\ https://github.com/WolfgangErb/LC3Ditp$

P. Dencker, W. Erb 8.9.2017 Polynomial Interpolation

- BOJANOV, B., AND PETROVA, G.
 On minimal cubature formulae for product weight functions. J. Comput. Appl. Math. 85, 1 (1997), 113–121.
- Bos, L., De Marchi, S., and Vianello, M.Polynomial approximation on Lissajous curves in the d-cube. Appl. Numer. Math. 116 (2017), 47–56.
- [3] BOS, L., CALIARI, M., DE MARCHI, S., VIANELLO, M., AND XU, Y. Bivariate Lagrange interpolation at the Padua points: the generating curve approach. J. Approx. Theory 143, 1 (2006), 15–25.
- [4] CALIARI, M., DE MARCHI, S., SOMMARIVA, A., AND VIANELLO, M.
 Padua2DM: fast interpolation and cubature at the Padua points in Matlab/Octave. Numer. Algorithms 56, 1 (2011), 45–60.
- [5] DE MARCHI, S., VIANELLO, M., AND XU, Y.
 New cubature formulae and hyperinterpolation in three variables. BIT 49, 1 (2009), 55–73.
- [6] DENCKER, P., AND ERB, W. Multivariate polynomial interpolation on Lissajous-Chebyshev nodes. J. Appr. Theory 219 (2017), 15–45.
- [7] DENCKER, P., AND ERB, W.
 A unifying theory for multivariate polynomial interpolation on general Lissajous-Chebyshev nodes. arXiv:1711.00557 (2017).
- [8] DENCKER, P., ERB, W., KOLOMOITSEV, Y., AND LOMAKO, T.
 Lebesgue constants for polyhedral sets and polynomial interpolation on LC nodes. J. Complexity 43 (2017), 1–27.
- ErB, W., KAETHNER, C., DENCKER, P., AND AHLBORG, M.
 A survey on bivariate Lagrange interpolation on Lissajous nodes. Dolomites Research Notes on Approximation 8 (2015), 23–36.
- [10] MORROW, C. R., AND PATTERSON, T. N. L. Construction of algebraic cubature rules using polynomial ideal theory. SIAM J. Numer. Anal. 15 (1978), 953–976.
- [11] XU, Y. Lagrange interpolation on Chebyshev points of two variables. J. Approx. Theory 87, 2 (1996), 220–238.

P. Dencker, W. Erb 8.9.2017 Polynomial Interpolation 30/30