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Abstract

The degree/diameter problem is to determine the largest graphs or digraphs of
given maximum degree and given diameter. General upper bounds – called Moore

bounds – for the order of such graphs and digraphs are attainable only for certain
special graphs and digraphs. Finding better (tighter) upper bounds for the maxi-
mum possible number of vertices, given the other two parameters, and thus attack-
ing the degree/diameter problem ‘from above’, remains a largely unexplored area.
Constructions producing large graphs and digraphs of given degree and diameter
represent a way of attacking the degree/diameter problem ‘from below’. This sur-

vey aims to give an overview of the current state-of-the-art of the degree/diameter
problem. We focus mainly on the above two streams of research. However, we
could not resist mentioning also results on various related problems. These include
considering Moore-like bounds for special types of graphs and digraphs, such as
vertex-transitive, Cayley, planar, bipartite, and many others, on the one hand, and
related properties such as connectivity, regularity, and surface embeddability, on
the other hand.
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1 Introduction

The topology of a network (such as a telecommunications, multiprocessor, or local area
network, to name just a few) is usually modelled by a graph in which vertices represent
‘nodes’ (stations or processors) while undirected or directed edges stand for ‘links’ or other
types of connections.

In the design of such networks, there are a number of features that must be taken into
account. The most common ones, however, seem to be limitations on the vertex degrees
and on the diameter. The network interpretation of the two parameters is obvious: The
degree of a vertex is the number of connections attached to a node, while the diameter
indicates the largest number of links that must be traversed in order to transmit a message
between any two nodes.

What is then the largest number of nodes in a network with a limited degree and diameter?
If links are modelled by undirected edges, this leads to the

• Degree/Diameter Problem: Given natural numbers ∆ and D, find the largest pos-
sible number of vertices n∆,D in a graph of maximum degree ∆ and diameter ≤ D.

The statement of the directed version of the problem differs only in that ‘degree’ is replaced
by ‘out-degree’. We recall that the out-degree of a vertex in a digraph is the number of
directed edges leaving the vertex. We thus arrive at the

• (Directed) Degree/Diameter Problem: Given natural numbers d and k, find the
largest possible number of vertices nd,k in a digraph of maximum out-degree d and
diameter ≤ k.

Research activities related to the degree/diameter problem fall into two main streams.
On the one hand, there are proofs of non-existence of graphs or digraphs of order close
to the general upper bounds, known as the Moore bounds. On the other hand, there is
a great deal of activity in the constructions of large graphs or digraphs, furnishing better
lower bounds on n∆,D (resp., nd,k).Since the treatments of the undirected and directed

cases have been quite different, we divide further exposition into two parts. Part 1 deals
with the undirected case and Part 2 with the directed one.

We first discuss the existence of Moore graphs (Section 2.1) and Moore digraphs (Section
3.1). These are graphs and digraphs which attain the so called Moore bound, giving
the theoretical maximum for the order of a graphs (resp., digraph) given diameter and
maximum degree (resp., out-degree).

Then we present known results on the existence of graphs (Section 2.2) and digraphs
(Section 3.2) whose order is ‘close’ to the Moore bound, whenever the Moore bound
cannot be attained.
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The question of regularity of graphs close to the Moore bound is much more interesting
for directed graphs than for undirected ones, and so we include a section (3.3) on this
topic only in Part 2.

The next two sections (2.3 and 3.4) are then devoted to the constructions of large graphs
and digraphs. In Sections 2.4 and 3.5 we introduce and discuss several restricted versions
of the degree/diameter problem for graphs and digraphs.

Various related topics are listed in Sections 2.5 and 3.6. Finally, in the Conclusion, we
present a short list of some of the interesting open problems in the area.
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2 Part 1: Undirected graphs

2.1 Moore graphs

There is a straightforward upper bound on the largest possible order (i.e., the number of
vertices) n∆,D of a graph G of maximum degree ∆ and diameter D. Trivially, if ∆ = 1
then D = 1 and n1,1 = 2; in what follows we therefore assume that ∆ ≥ 2.

Let v be a vertex of the graph G and let ni, for 0 ≤ i ≤ D, be the number of vertices
at distance i from v. Since a vertex at distance i ≥ 1 from v can be adjacent to at most
∆ − 1 vertices at distance i + 1 from v, we have ni+1 ≤ (∆ − 1)ni, for all i such that
1 ≤ i ≤ D− 1. With the help of n1 ≤ ∆, it follows that ni ≤ ∆(∆− 1)i−1, for 1 ≤ i ≤ D.
Therefore,

n∆,D =
D∑

i=0

ni ≤ 1 + ∆ + ∆(∆ − 1) + . . .+ ∆(∆ − 1)D−1

= 1 + ∆(1 + (∆ − 1) + . . .+ (∆ − 1)D−1)

=

{
1 + ∆ (∆−1)D−1

∆−2
if ∆ > 2

2D + 1 if ∆ = 2
(1)

The right-hand side of (1) is called the Moore bound and is denoted by M∆,D. The bound
was named after E. F. Moore who first proposed the problem, as mentioned in [160]. A
graph whose order is equal to the Moore bound M∆,D is called a Moore graph; such a
graph is necessarily regular of degree ∆.

The study of Moore graphs was initiated by Hoffman and Singleton. Their pioneering
paper [160] was devoted to Moore graphs of diameter 2 and 3. In the case of diameter
D = 2, they proved that Moore graphs exist for ∆ = 2, 3, 7 and possibly 57 but for no
other degrees, and that for the first three values of ∆ the graphs are unique. For D = 3
they showed that the unique Moore graph is the heptagon (for ∆ = 2). The proofs exploit
eigenvalues and eigenvectors of the adjacency matrix (and its principal submatrices) of
graphs.

It turns out that no Moore graphs exist for the parameters ∆ ≥ 3 and D ≥ 3. This was
shown by Damerell [95] by way of an application of his theory of distance-regular graphs
to the classification of Moore graphs. An independent proof of this result was also given
by Bannai and Ito [19].

Main results concerning Moore graphs can therefore be summed up as follows. Moore
graphs for diameter D = 1 and degree ∆ ≥ 1 are the complete graphs K∆+1. For
diameter D = 2, Moore graphs are the cycle C5 for degree ∆ = 2, the Petersen graph (see
Fig. 1) for degree ∆ = 3, and the Hoffman-Singleton graph (see Fig. 2, drawn by Slamin
[220]) for degree ∆ = 7. Finally, for diameter D ≥ 3 and degree ∆ = 2, Moore graphs are
the cycles on 2D + 1 vertices C2D+1.
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Figure 1: Petersen graph.

Between the time of the publication of the Hoffman-Singleton paper (1960) and the time
of the publication of the results by Bannai-Ito and Damerell (both in 1973), there were
several related partial results published. For example, Friedman [134] showed that there
are no Moore graphs for parameters (∆, D), where ∆ = 3, 4, 5, 6, 8 and 3 < D ≤ 300,
except, possibly, for the pair (5, 7). He also showed that there are no Moore graphs with
parameters (3, D), when D ≥ 3 and 2D+ 1 is prime. Bosák [60] proved the nonexistence
of Moore graphs of degree 3 and diameter D, 3 ≤ D ≤ 8. For another contribution to
nonexistence proofs, see also Plesńık [202]. A combinatorial proof that the Moore graph
with ∆ = 7 and D = 2 is unique was given by James [167]. As an aside, a connection of
Moore graphs with design theory was found by Benson and Losey [38], by embedding the
Hoffman-Singleton graph in the projective plane PG(2, 52).

Several other areas of research in graph theory turn out to be related or inspired by the
theory of Moore graphs; examples include cages, antipodal graphs, Moore geometries,
and Moore groups. Recall that a (k, g)-cage is a graph of degree k and girth g, with the
minimum possible number of vertices. Connections between cages and Moore graphs are
explained in a survey paper on cages by Wong [236].

A graph is antipodal if for each vertex x there exists a vertex z such that d(x, y)+d(y, z) =
d(x, z), for all vertices y of the graph. Sabidussi [208] showed that Moore graphs of
diameter 2 and degree 3, 7, or possibly 57 are ‘antipodal quotients’ of certain extremal
antipodal graphs of odd diameter.

Fuglister [135, 136] and Bose and Dowling [64] investigated finite Moore geometries which
are a generalisation of Moore graphs; other contribution to this area include Damerell
and Georgiacodis [97], Damerell [96], and Roos and van Zanten [206, 207]. Finally, Fried
and Smith [132] defined a Moore group and proved results that limit the possible degrees
that Moore groups of fixed rank can have, by reducing the problem to the study of Moore
graphs.
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Figure 2: Hoffman-Singleton graph.
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2.2 Graphs of order close to Moore bound

Since Moore graphs exist only in a small number of cases, the study of the existence of
large graphs of given diameter and maximum degree focuses on graphs whose order is
‘close’ to the Moore bound, that is, graphs of order M∆,D − δ, for δ small. The parameter
δ is called the defect, and the most usual understanding of ‘small defect’ is that δ ≤ ∆.

For convenience, by a (∆, D)-graph we will understand any graph of maximum degree ∆
and of diameter at most D; if such a graph has order M∆,D − δ then it will be referred to
as a (∆, D)-graph of defect δ.

Erdős, Fajtlowitcz and Hoffman [111] proved that, apart from the cycle C4, there are no
graphs of degree ∆, diameter 2 and defect 1, that is, of order one less than the Moore
bound; for a related result, see Fajtlowicz [117].

This was subsequently generalized by Bannai and Ito [20], and also by Kurosawa and
Tsujii [176], to all diameters. Hence, for all ∆ ≥ 3, there are no (∆, D)-graphs of defect
1, and for ∆ = 2 the only such graphs are the cycles C2D. It follows that, for ∆ ≥ 3, we
have n∆,D ≤M∆,D − 2.

Let us now discuss the case of defect δ = 2. Clearly, if ∆ = 2 then the (∆, D)-graphs of
defect 2 are the cycles C2D−1. For ∆ ≥ 3, only five (∆, D)-graphs of defect 2 are known
at present: Two (3, 2)-graphs of order 8, a (4, 2)-graph of order 15, a (5, 2)-graph of order
24, and a (3, 3)-graph of order 20.

The last three of these graphs, which are depicted in Fig. 3, were found by Elspas [109]
and are known to be unique; in Bermond, Delorme and Farhi [42], the (3, 3)-graph was
constructed as a certain product of a 5-cycle with the field of order four. These results
(together with [20]) imply that n4,2 = 15, n5,2 = 24, and n3,3 = 20.

In [194, 195], ed and Miller proved some structural properties of graphs of diameter 2 and
show that graphs of diameter 2 and defect 2 do not exist for many values of d.

Little is known about graphs with defects larger than two. Jorgensen [168] proved that
a graph with maximum degree 3 and diameter D ≥ 4 cannot have defect 2, which shows
that n3,D ≤ M3,D − 3 if D ≥ 4; for D equal to 4 this was previously proved by Stanton,
Seah and Cowan [228].

Recently, Miller and Simanjuntak [189] proved that a graph with maximum degree 4 and
diameter D ≥ 3 cannot have defect 2 which shows that n4,D ≤ M4,D − 3 if D ≥ 3.
Some further upper bounds on the maximum number of vertices for graphs which are not
Moore were given by Smyth [224]. See also Buskens and Stanton [70], Buskens, Rogers
and Stanton [71], and Cerf, Cowan, Mullin and Stanton [79, 80] for work related to (small)
graphs of order close to Moore bound.
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(ii)

(iii)        

(i)

Figure 3: Examples of graphs of order Mδ,D − 2 :
(i) n = 15, ∆ = 4, D = 2; (ii) n = 20, ∆ = 3, D = 3; (iii) n = 24, ∆ = 5, D = 2.
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In [193], Nguyen and Miller proved some structural properties of graphs of diameter 2
and maximal repeats, that is, graphs with the property that there exists a vertex with
unique paths of lengths at most the diameter to all the other vertices except one vertex to
which the number of walks of length at most the diameter is equal exactly to the defect
plus 1. Furthermore, in [195], they considered graphs with diameter 2 and defect 3. They
proved that such graphs must contain a certain induced subgraph, which in turn leads to
the proof that, for degree 6 and diameter 2, the largest order of a vertex-transitive graph
is 32.

We summarise our current knowledge about the upper bound on the order of graphs of
degree ∆ and diameter D in Table 1.

Diameter D Maximum Degree ∆ Upper Bound for Order n∆,D

D = 1 ∆ ≥ 1 M∆,1

D = 2 ∆ = 2, 3, 7, 57(?) M∆,2

other ∆ ≥ 2 M∆,2 − 2

D = 3 ∆ = 2 M2,3

∆ = 3 M3,3 − 2

∆ = 4 M4,D − 3

all ∆ ≥ 5 M∆,3 − 2

D ≥ 4 ∆ = 2 M2,4

∆ = 3 M3,D − 3

∆ = 4 M4,D − 3

all ∆ ≥ 5 M∆,D − 2

Table 1: Current upper bounds of n∆,D.

In Sections 2.1 and 2.2, we have seen that for certain pairs (∆, D) there exist graphs
of order close to (and in some cases equal to) the Moore bound. The situation for pairs
(∆, D) not discussed above is largely unknown. In this connection, Bermond and Bollobás
[39] asked the following interesting question: Is it true that for each positive integer c there

exist ∆ andD such that the order of the largest graph of maximum degree ∆ and diameter
D is at most M∆,D − c ?
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2.3 Constructions of large graphs

Another way to study graphs close to the Moore bound is by constructing large graphs
in order to find improvements in the lower bound on the maximum possible order of
graphs for given D and ∆. This has been done in various ways, and often by considering
particular classes of graphs, such as vertex-transitive and Cayley graphs (which will be
discussed in more detail in forthcoming sections).

2.3.1 General overview

The undirected de Bruijn graph of type (t, k) has vertex set V formed by all sequences
of length k, the entries of which are taken from a fixed alphabet consisting of t distinct
letters. In the graph, two vertices (a1, a2, . . . , ak) and (b1, b2, . . . , bk) are joined by an edge
if either ai = bi+1 for 1 ≤ i ≤ k − 1, or if ai+1 = bi, for 1 ≤ i ≤ k − 1. Obviously, the
undirected deBruijn graph of type (t, k) has order tk, degree ∆ = 2t and diameter D = k.
These graphs therefore give, for any ∆ and D, the lower bound

n∆,D ≥
(∆

2

)D
.

Various improvements on this bound have been obtained. For example, ignoring directions
in the digraph construction of Baskoro and Miller [28] produces graphs of even maximum
degree ∆ and diameter at most D; the order of these graphs is

(∆

2

)D
+
(∆

2

)D−1
.

A substantial progress was recently achieved by Canale and Gómez [75] by exhibiting, for
an infinite set of values of ∆, families of graphs showing that

n∆,D ≥
( ∆

1.57

)D

for D congruent with −1, 0, or 1 (mod 6).

For completeness, we mention several related results. Certain extensions of deBruijn
graphs were studied by Canale and Gómez [76]. An adaptation of the digraph construction
of Imase and Itoh [163] also gives (∆, D)-graphs of order at least d∆

2
eD. The list of general

lower bounds also includes constructions by Elspas [109], Friedman [133], Korn [174],
Akers [5] and Arden and Lee [11], all giving (∆, D)-graphs of order

f(∆)(∆ − 1)d
D
2
e + g(∆),

where f and g depend on ∆ but not on D.

Much better results have been obtained for small values of D. By far the best result is
furnished by Brown’s construction [68], with the help of finite projective geometries. Let
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q be a prime power and let F be the Galois field of order q. A projective point is any
collection of q − 1 triples of the form (ta, tb, tc), where t ∈ F and (a, b, c) is a non-zero
vector in F 3; any non-zero triple in this set is a representative of the point. Let P be the
set of all such points; it is easy to see that |P| = q2 + q + 1. Let G be the graph with
vertex set P, where two vertices are adjacent if the corresponding projective points have
orthogonal representatives. Since any two non-orthogonal representatives are orthogonal
to some non-zero element of F 3, the graph G has diameter 2. In general, G need not be
regular but its maximum degree is always ∆ = q + 1. Therefore, for each ∆ such that
∆ − 1 is a prime power, we have [68]

n∆,2 ≥ ∆2 − ∆ + 1. (2)

As observed by Erdős, Fajtlowicz and Hoffman [111], and by Delorme [100], this bound
can be improved to

n∆,2 ≥ ∆2 − ∆ + 2 (3)

if ∆ − 1 is a power of 2. In order to obtain a lower bound for the remaining values of
∆, we may use the following fact [162] about the distribution of prime numbers: For an
arbitrary ε > 0, there is a constant bε such that for any natural m there is a prime between
m and bεm

7/12+ε. This, in combination with vertex duplication (insertion of new vertices
adjacent to all neighbours of certain old vertices) in the graphs of [68], implies that for
any ε > 0 there is a constant cε such that, for any ∆, we have

n∆,2 ≥ ∆2 − cε∆
19/12+ε. (4)

For larger diameter, it seems more reasonable to focus on asymptotic behaviour of n∆,D

for fixed D while ∆ → ∞. Delorme [99] introduced the parameter

µD = lim inf∆→∞
n∆,D

∆D
.

Trivially, µD ≤ 1 for all D, and µ1 = 1; the bound (4) shows that µ2 = 1 as well. Further
results of Delorme [98] imply that µD is equal to 1 also for D = 3 and D = 5.

The above facts can be seen as an evidence in favour of an earlier conjecture of Bollobás
[57] that, for each ε > 0, it should be the case that

n∆,D > (1 − ε)∆D

if ∆ and D are sufficiently large.

The values of µD for other diameters D are unknown. For example, for diameter 4 we
only know that µ4 ≥ 1/4; see Delorme [100] for more information.
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2.3.2 Star product and compounding

A number of sophisticated constructions arose in the quest for large graphs of given degree
and diameter. We comment in some detail on two that seem to be most important: the
star product of Bermond, Delorme and Farhi [41, 42] and the compounding of graphs
introduced by Bermond, Delorme and Quisquater [43].

The concept of the star product of two graphs H and K was introduced by Bermond,
Delorme and Farhi [41] as follows. Fix an arbitrary orientation of all edges of H and let
~E be the corresponding set of the fixed darts of H . For each dart uv ∈ ~E, let φuv be a
bijection on the set V (K). Then the vertex set of the star product H ∗K is V (H)×V (K),
and a vertex (u, k) is joined in H ∗K to a vertex (v, l) if and only if either u = v and kl

is an edge of K, or if uv ∈ ~E and l = φuv(k).

Loosely speaking, the star product of H and K can be formed by taking |V (H)| copies
of K, whereby two copies of K ‘represented’ by vertices u, v ∈ V (H) are interconnected

by a perfect matching (that depends on the bijection φuv), whenever uv ∈ ~E.

With the help of the star product, Bermond, Delorme and Farhi [41, 42] described several
families of large (∆, D)-graphs for various values of ∆ and D. An inspection of their
examples reveals, however, that in all instances they actually used a special case of the
star product that we describe next.

Let Γ be a group and let S be a symmetric unit-free generating set S, meaning that
S−1 = S and 1Γ 6= S. The Cayley graph C(Γ, S) is the graph with vertex set Γ, two
vertices a, b being adjacent if a−1b ∈ S. In the above definition of the ∗-product H ∗K,
take now K = C(Γ, S) and φuv(k) = guvψuv(k), where guv is an arbitrary element of Γ
and ψuv is an automorphism of Γ. In [41, 42], the authors used this special version of the
∗-product mainly with Cayley graphs of cyclic groups and of the additive groups of finite
fields. We now briefly comment on compounding. Roughly speaking, compounding of

two graphs G and H is obtained by taking |V (H)| copies of G, indexed by the vertices of
H , and joining two copies Gu, Gv of G by a single edge (or a pair of edges) whenever uv
is an edge of H . Depending on particular positions of edges between copies of the graph
G, one may obtain various large graphs of given degree and diameter.

This method tends to give good results, especially in ad hoc combinations with other
methods. For instance, Fiol and Fábrega [124], and Gómez [141], considered compounding
combined with graphs on alphabets, where vertices are words over a certain alphabet and
adjacency is defined by various relations between words. Large graphs of diameter 6,
obtained by methods in this category, were given by Gómez [142]. Other related results
were produced by Fiol, Yebra and Fábrega [131], and by Gómez and Fiol [146].

Several other ad hoc methods have been designed in connection with searching for large
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(∆, D)-graphs for relatively small values of ∆ and D. As most of these methods are based
on graphs related in one way or another to algebraic structures (mostly groups), we will
discuss them in more detail in the next subsection. Here we just mention a method by
Gómez, Pelayo and Balbuena [152] that produces large graphs of diameter six by replacing
some vertices of a Moore bipartite graph of diameter six with graphs Kh which are joined
to each other and to the rest of the graph using a special graph of diameter two. The
degree of the constructed graph remains the same as the degree of the original graph. In
an extension to this work, Gómez and Miller [149] presented two new generalizations of
two large compound graphs.

1.3.3 Graph lifting

Graph lifting has been well known in algebraic and topological graph theory for decades
[153]. It is well suited for producing large (∆, D)-graphs since a number of other construc-
tion methods can be reduced to lifting. In order to describe the graph lifting construction,
we will think of (undirected) edges as being formed by pairs of oppositely directed darts;
if e is a dart then e−1 will denote its reverse. The set D(G) of all darts of G then satisfies
|D(G)| = 2|E(G)|. For a finite group Γ, a mapping α : D(G) → Γ will be called a voltage
assignment if α(e−1) = (α(e))−1, for any dart e ∈ D(G). The pair (G,α) determines
the lift Gα of G. The vertex set and the dart set of the lift are V (Gα) = V (G) × Γ
and D(Gα) = D(G) × Γ, In the lift, (e, g) is a dart from the vertex (u, g) to the vertex
(v, h) if and only if e is a dart from u to v in the base graph G and, at the same time,
h = gα(e). The lift is an undirected graph because the darts (e, g) and (e−1, gα(e)) are
mutually reverse and form an undirected edge of Gα.

Figure 4 shows an example of a base graph with ordinary voltages in the group Z5 × Z5

which lifts to the Hoffman-Singleton graph, displayed in Fig. 2; the function p(i) in Fig.
4 can be any quadratic polynomial over Z5 in the variable i, as follows from [213].

(i,p(i))
vux y

(0,1) (0,2)
e i

Figure 4: The base graph for the Hoffman-Singleton graph.

It is known [153] that a graph H is a lift (of a smaller graph) if and only if the automor-
phism group of H contains a non-trivial subgroup acting freely on the vertex set of H .
This condition is in fact satisfied for most of the current largest examples of (∆, D)-graphs,
and hence most of these can be described as lifts.

The latest examples of reformulating an existing construction in terms of lifts are the
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largest known (∆, D)-graphs for the pairs (3,7), (3,8), (4,4), (5,3), (5,5), (6,3), (6,4),
(7,3), (14,3), and (16,2), initially obtained by Exoo [112] by computer search. Having
mentioned computers, we note that the diameter of the lift can be conveniently expressed
in terms of voltages on walks of the base graph [65]; besides its theoretical importance,
this fact can be used to design efficient diameter-checking algorithms.

The cases when the base graphs are bouquets of loops (possibly with semi-edges, i.e.,
‘dangling’ non-loop edges incident with just one vertex) are of particular importance,
since their lifts are Cayley graphs. A more colloquial but equivalent definition of a Cayley
graph was given in the previous subsection. While Cayley graphs are always lifts of
single-vertex graphs, in many instances quite complex Cayley graphs (such as the Cayley
graphs of certain semidirect products of Abelian groups considered in [105]) can actually
be described as ordinary lifts of smaller Cayley graphs, with voltages in Abelian (mostly
cyclic) groups; see [66].

For more general base graphs, there exist convenient sufficient conditions [66] for a lift
to be a vertex transitive (or a Cayley) graph, which can be successfully used to produce
large vertex transitive (∆, D)-graphs by lifts. Results for vertex-transitive and Cayley
graphs will be surveyed in Subsections 2.4.1 and 2.4.2. We conclude this subsection with
a remark relating lifts of graphs with the ∗-product G ∗H : If H is a Cayley graph and if
the group values on the edges of G are taken in the Cayley group of H then G ∗H is just
a lift of G.

2.3.3 Tables of large graphs

Needless to say that in many cases the largest currently known (∆, D)-graphs have been
found with the assistance of computers. It is clear that computation of diameter is much
easier in the case of graphs that admit a lot of symmetries; here of particular advantage
are vertex-transitive graphs which we will discuss in the next subsection. At this point
we note that Toueg and Steiglitz [232] present a local search algorithm for the design of
small diameter networks, for both directed and undirected graphs. The resulting graphs
tend to have small diameter and small average shortest distance.

Descriptions of many new constructions, often accompanied by a new corresponding ta-
ble of the largest known values of (∆, D)-graphs, are published frequently. These include
constructions by Alegre, Fiol and Yebra [8], Bar-Yehuda and Etzion [22], Bermond, De-
lorme and Farhi [41, 42], Bermond, Delorme and Quisquater [44, 45, 47, 46], Campbell
et al. [74], Carlsson, Cruthirds, Sexton and Wright [78], Chudnovsky, Chudnovsky and
Denneau [82], Chung [83], Comellas and Gómez [93], Delorme [98, 100], Delorme and
Farhi [101], Dinneen and Hafner [105], Doty [106], Gómez, Fiol and Serra [147], Gómez,
Fiol and Yebra [148], Hafner [155], Memmi and Raillard [180], Smyth [223], and Storwick
[229].
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Table 2 shows a summary of current largest known graphs for degree ∆ ≤ 16 and diameter
D ≤ 10. These graphs provide the best current lower bounds on the order of graphs for
given values of degree and diameter. This table can be found on the website

“http://maite71.upc.es/grup de grafs/grafs/taula delta d.html”

which is updated regularly by Francesc Comellas. A latex file of this table can be obtained
upon request from Charles Delorme at email “cd@lri.fr”.

Recent updates in Table 2 are due to Exoo: entries (3,6)-(3,8), (4,4), (4,7), (5,3), (5,5),
(6,3), (6,4), (7,3), (16,2); to Hafner: entries (5,9), (5,10), (6,7)-(6,10), (7,6)-(7,10), (8,5),
(8,7), (8,9), (8,10), (9,7), (9,10), (10,5), (10,7)-(10,10), (11,5), (11,7), (11,8), (12,7), (13,5),
(13,7), (13,8), (14,5), (14,8), (15,8); to Quisquater: entries (3,9), (3,10); to Gómez and
Pelayo: entries (5,6), (6,6), (8,6), (9,6), (10,6), (12,6), (14,9); to Sampels: entries (4,8),
(4,10), (5,8)-(5,10), (6,7)-(6,10), (7,6)-(7,10), (8,8)-(8,10), (9,4), (9,5), (9,8)-(9,10), (10,5),
(10,7), (10,8)-(10,10); to McKay, Miller, Siráň: entries (11,2), (13,2); and to Gómez:
entries (5,6), (8,6), (9,6), (10,6), (12,6), (14,6) [89].

2.4 Restricted versions of the degree/diameter problem

The study of large graphs of given degree and diameter has often been restricted to
special classes of graphs. The most obvious candidates here are vertex-transitive and
Cayley graphs, suitable because of their quick computer generation as well as from the
point of view of diameter checking. Other special classes, for which the degree/diameter
problem has been considered, include bipartite graphs and graphs embeddable in a fixed
surface (most notably, planar graphs).

2.4.1 Vertex-transitive graphs

Let vt∆,D be the largest order of a vertex-transitive (∆, D)-graph. As an aside, note
that if a Moore graph of degree 57 and diameter 2 does exist then it cannot be vertex-
transitive [72]. Somewhat surprisingly, although vertex-transitivity is a rather restrictive
property, there is no better general upper bound on vt∆,D than the bounds listed in the
previous sections. As regards lower bounds, a number of the existing examples of large
(∆, D)-graphs are vertex-transitive (many of them actually are Cayley graphs and will be
discussed in the next subsection).

The best general result here seems to be the one of McKay, Miller and Širáň [179] who
showed that

vt∆,2 ≥ 8

9

(
∆ +

1

2

)2
(5)

for all degrees of the form ∆ = (3q − 1)/2, where q is a prime power congruent to 1
(mod 4). The graphs that prove the inequality (5) are quite remarkable: They are all
vertex-transitive but non-Cayley; the graph corresponding to the value q = 5 turns out
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D 2 3 4 5 6 7 8 9 10
∆

3 10 20 38 70 132 190 330 570 950

4 15 41 96 364 740 1 200 3 080 7 550 17 604

5 24 72 210 620 2 776 5 500 16 956 53 020 164 700

6 32 110 380 1 395 7 908 19 279 74 800 294 679 1 211 971

7 50 156 672 2 756 11 220 52 404 233 664 1 085 580 5 311 566

8 57 253 1081 5 050 39 672 129 473 713 539 4 039 649 13 964 808

9 74 585 1 536 7 884 75 828 270 048 1 485 466 8 911 766 25 006 478

10 91 650 2 211 12 788 134 690 561 949 4 019 489 13 964 808 52 029 411

11 98 715 3 200 18 632 156 864 970 410 5 211 606 48 626 760 179 755 200

12 133 780 4 680 29 435 359 646 1 900 319 10 007 820 97 386 380 466 338 600

13 162 845 6 560 39 402 531 440 2 901 294 15 733 122 145 880 280 762 616 400

14 183 912 8 200 56 325 816 186 6 200 460 34 839 506 194 639 900 1 865 452 680

15 186 1 215 11 712 73 984 1 417 248 7 100 796 45 000 618 282 740 976 3 630 989 376

16 198 1 600 14 640 132 496 1 771 560 14 882 658 86 882 544 585 652 704 7 394 669 856

Table 2: The order of the largest known graphs of maximum degree ∆ and diameter D.
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to be the Hoffman-Singleton graph, and for q = 9, the corresponding (13, 2)-graph has
order 162, just 8 off the Moore bound M13,2 = 170.

The construction of McKay-Miller-Širáň graphs [179] relies on a suitable lift of the com-
plete bipartite graph Kq,q. A simplified version (in the form of a lift of a dipole with q
edges and (q − 1)/4 loops at each of its two vertices) was presented by Šiagiová [213],
based on her results about compositions of regular coverings [212, 215]. In this connection
it is interesting to mention another result of Šiagiová [214], who showed that, among all
regular lifts of a dipole of degree ∆, the maximum order of a lift of diameter 2 is, for
sufficiently large ∆, bounded above by

(4(10 +
√

2)/49)∆2 ' .93∆2.

This compares well with the Moore bound M∆,2 = ∆2 + 1, and is larger than the bound
from (5), which is approximately .89∆2.

It is also worth noting that the graphs of McKay-Miller-Širáň are very rich in symmetries;
their full automorphism groups were determined by Hafner [156], using ideas related to
combinatorial geometry.

The results of [179] and [66] strongly suggest that computer search over lifts of small
graphs, using various voltage assignments, may lead to further new examples of highly
symmetric large graphs of given diameter and degree.

2.4.2 Cayley graphs

Let C∆,D denote the largest order of a Cayley graph of degree ∆ and diameter D. The
situation of general upper bounds for Cayley graphs of general groups is similar to the
vertex-transitive case discussed above, with a few obvious exceptions. For instance, as the
Petersen graph and the Hoffman-Singleton graph are known to be unique and non-Cayley,
we have C∆,D ≤ M∆,D − 2 for D = 2 and ∆ = 3, 7.

Lakshmivarahan, Jwo and Dhall [177] produced a survey of Cayley graph network de-
signs. Apart from the usual properties of order, degree and diameter, they also consider
shortest path distance, vertex-transitivity, arc-transitivity and several forms of distance
transitivity. The survey emphasises algebraic features, such as cosets, conjugacy classes,
and automorphism actions, in the determination of some topological properties of over 18
types of networks.

We note that roughly one half of the values in Table 2 have been obtained from Cayley
graphs. Computer-assisted constructions of large (∆, D)-graphs, for relatively small ∆
and D, from Cayley graphs of semidirect products of (mostly cyclic) groups can be found
in Hafner [155]. Later, Branković et al. [66] showed that the constructions of [155] can
be obtained as lifts of smaller Cayley graphs with voltage assignments in smaller, mostly
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cyclic, groups. Researchers who have contributed in the quest for large Cayley graphs of
given degree and diameter also include Campbell [73], and Akers and Krishnamurthy [6].

An important stream of research in Cayley graphs, one that is closely related to the
degree/diameter problem, is bounding the diameter of a Cayley graph in terms of a
logarithm of the order of the group. The relation relies on the fact that, for k ≥ 3 and
d ≥ 2, we have M∆,D < ∆D, and therefore also n < ∆D for n = n∆,D. It follows that, for
the diameter of a graph of order n, we always have

D > b× log n, where b = 1/ log ∆.

Although taking logarithms results in a substantial loss of precision, it is still reasonable
to ask about upper bounds on the diameter D in terms of the logarithm of the largest
order a (∆, D)-graph; as indicated earlier, this has been considered primarily for Cayley
graphs.

From a result of Babai and Erdős [12], it follows that there exists a constant c, such
that, for any finite group G, there exists a set of t ≤ c log |G| generators, such that the
associated Cayley graph has diameter at most t. This settles the general question about
an upper bound on D, at least in terms of a constant multiple of the logarithm of C∆,D,
the largest order of a Cayley graph of degree ∆ and diameter D. Further refinements
have been obtained for special classes of groups, with emphasis on reducing the size of
generating sets (and hence reducing the degree).

Babai, Kantor and Lubotzky [14] gave an elementary and constructive proof of the fact
that every nonabelian finite simple group G contains a set of at most seven generators
for which the diameter of the associated Cayley graph is at most c log |G|, for an absolute
constant c. For projective special linear groups G = PSL(m, q), this was improved by
Kantor [169] by showing that, for each m ≥ 10, there is a trivalent Cayley graph for G of
diameter at most c log |G|.

For an arbitrary transitive subgroup G of the symmetric group of degree r and any sym-
metric generating set of G, Babai and Seress [16] proved that the diameter of the corre-
sponding Cayley graph is at most

exp((r ln r)1/2(1 + o(1))).

Note that this bound is quite far from

log |G| = log (r!) ≈ cr log r;

however, the strength of the statement is in that it is valid for arbitrary groups and
generating sets. An earlier result by the same authors [15] states that if G is either
the symmetric or the alternating group of degree r, then, for an arbitrary symmetric
generating set, the corresponding Cayley graph of G has diameter not exceeding

exp((r − ln r)1/2(1 + o(1))),

the electronic journal of combinatorics (2005), #DS14 19



which is better than the previous bound (however, for more special groups). By prob-
abilistic arguments, Babai and Hetyei [13] show that, for almost every pair of random
permutations (p1, p2) from the symmetric group of degree r, the diameter of the Cay-
ley graph of the group G = 〈p1, p2〉 with generating set S = {p±1

1 , p±1
2 } is less than

exp((1
2

+ o(1))(ln r)2). Since such a group almost surely (for r → ∞) contains the al-
ternating group of degree r, this result (at least in a probabilistic sense) is substantially
stronger than the previous two bounds. Nevertheless, it is still far from the conjectured
[15] upper bound rc for the diameter of any Cayley graph of the symmetric group of
degree r, for an absolute constant c.

2.4.3 Abelian Cayley graphs

Further restrictions on the classes of groups yield better upper bounds. We discuss here
in more detail the Cayley graphs of abelian groups. Let AC∆,D denote the largest order
of a Cayley graph of an abelian group of degree ∆ and diameter D. Inequalities for such
graphs are often stated in terms of the number of generators of the reduced generating
set rather than the degree. Given a Cayley graph C(Γ, S), the reduced generating set is a
subset S ′ of S such that, for each s ∈ S, exactly one of s, s−1 appears in S ′. If the reduced
generating set has d elements then the degree of the Cayley graph is equal to ∆ = 2d−d′,
where d′ is the number of generators of order two in S.

Investigations of large abelian Cayley graphs of given size of reduced generating set and
given diameter can be based on the following simple but ingenious idea (see [107] for
genesis and background). Any finite abelian group Γ with a symmetric generating set S
and a reduced generating set S ′ = {g1, . . . , gd} of size d is a quotient group of the free
abelian d-generator group Zd by the subgroup N (of finite index), that is, the kernel of
the natural homomorphism Zd → Γ, which sends the unit vector ei ∈ Zd onto gi. For
any given D, define

Wd,D = {(x1, . . . , xd) ∈ Zd; |x1| + . . .+ |xd| ≤ D}.

Then the Cayley graph C(Γ, S) has diameter at most D if and only if Wd,D +N = Zd.

This has two immediate consequences. Firstly, |Wd,D| is an upper bound on AC2d,D.
Secondly, if N is a subgroup of Zd of finite index with the property Wd,D +N = Zd then
N determines a d-dimensional lattice that induces ‘shifts of the set Wd,D which completely
cover the elements of Zd; the index [Zd : N ] = |Γ| (which is a lower bound on AC2d,D) is
also equal to the absolute value of the determinant of the d-dimensional matrix formed by
the d generating vectors of N . The search for bounds on AC2d,D can therefore be reduced
to interesting problems in combinatorial geometry [107].

An exact formula for |Wd,D| (which, as we know, is automatically an upper bound on
AC2d,D) was given, for example, by Stanton and Cowan [227]. A general lower bound
on AC2d,D, based on a thorough investigation of lattice coverings discussed above, was
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obtained by Dougherty and Faber [107]. We state both bounds in the following form:
There exists a constant c (not depending on d and D), such that for any fixed d ≥ 2 and
all D,

c× 2d

d!d(ln d)1+log2 e
Dd +O(Dd−1) ≤ AC2d,D ≤

d∑
i=0

2i

(
d

i

)(
D

i

)
(6)

Note that the upper bound can be considered to be the abelian Cayley Moore bound for
abelian groups with d-element reduced generating sets. It differs from the Moore bound
M2d,D rather dramatically; if the number of generators d is fixed and D → ∞ then the
right hand side of (6) has the form

2dDd/d! +O(Dd−1).

Exact values of AC2d,D are difficult to determine. With the help of lattice tilings,
Dougherty and Faber (and many other authors, also using different methods – see [107])
showed that, for d = 2, there actually exist ‘abelian Cayley Moore graphs’, that is,

AC4,D = |W2,D| = 2D2 + 2D + 1;

the analysis here is facilitated by a nice shape of the set W2,D ⊂ Z2. For d = 3, the same
type of analysis [107] gives

AC6,D ≥ (32D3 + 48D2)/27 + f(D),

where f(D) is a linear function that depends on the residue class of D mod 3; the abelian
Cayley Moore bound here is

AC6,D ≤ |W3,D| = (4D3 + 6D2 + 8D + 3)/3.

A table of exact values of AC6,D for D ≤ 14 is included in [107].

It should be noted that the method of lattice-induced shifts of the sets Wd,D tends to be
manageable for small values of d while D → ∞, as can be seen from (6). At the other
end of the spectrum, for diameter D = 2, a folklore result says that

AC∆,2 ≥ b∆ + 2

2
cd∆ + 2

2
e (7)

This can be obtained from a Cayley graph for the product of cyclic groups Zb(∆+2)/2c ×
Zd(∆+2)/2e, with the generating set consisting of all pairs (x1, x2), in which exactly one of
x1, x2 is equal to 0. (The bound can in many cases be improved by 1 or 2.) Bounds on
AC∆,D, for small D and ∆ → ∞, can also be found in Garcia and Peyrat [137]; a typical
result is that

AC∆,D ≥ ∆D−2.17

21D!

for ∆ large enough and for D ≤ ∆.
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2.4.4 Bipartite graphs

In this short subsection we consider Moore bound for bipartite graphs. The ‘bipartite
Moore bound’, that is, the maximum number B∆,D of vertices in a bipartite graph of
maximum degree ∆ and diameter at most D, was given by Biggs [54]:

B2,D = 2D and B∆,D =
2(∆ − 1)D − 1

∆ − 2
if ∆ > 2.

Bipartite graphs satisfying the equality are called bipartite Moore graphs. Apart from K2,
bipartite Moore graphs can exist only if ∆ = 2 (the 2∆-cycles) or D = 2 (the complete
bipartite graphs K∆,∆), or if D = 3, 4 or 6 [54, 57]. For these values of D, bipartite Moore
graphs exist if ∆ − 1 is a prime power [42, 54]. On the other hand, for D = 3, there
are values of ∆ with no bipartite Moore graphs. A study of semiregular bipartite Moore
graphs was done by Yebra, Fiol and Fábrega [240].

Bond and Delorme [58, 59] give new constructions of large bipartite graphs with given
degree and diameter, using their new concept of a partial Cayley graph. Other construc-
tions of large bipartite graphs were found by Delorme [98, 99], using bipartite versions
of operations described earlier, most notably, ∗-product and compounding. In the same
papers, Delorme also studied the asymptotic behaviour of the problem by introducing the
parameter

βD = lim inf∆→∞
b∆,D

2∆D−1

where b∆,D is the largest order of a bipartite (∆, D)-graph. Comparing this with the
bipartite Moore bound, we see that βD ≤ 1 for all D; so far, it is only known [98, 99] that
equality holds for D = 2, 3, 4 and 6.

2.4.5 Graphs on surfaces

Let S be an arbitrary connected, closed surface (orientable or not) and let n∆,D(S) be
the largest order of a graph of maximum degree at most ∆ and diameter at most k,
embeddable in S. Let S0 be a sphere.

The planar (or, equivalently, spherical) version of the degree/diameter problem was con-
sidered by several authors. Hell and Seyffarth [159] have shown that, for diameter 2 and
∆ ≥ 8, we have

n∆,2(S0) = b3

2
∆c + 1.

For ∆ ≤ 7, the exact values of n∆,2(S0) were determined by Yang, Lin and Dai [239].

Subsequently, Fellows, Hell and Seyffarth [118] established upper and lower bounds for
planar graphs of diameter 3 and any maximum degree ∆ as

b9

2
∆c − 3 ≤ n∆,3(S0) ≤ 8∆ + 12.
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The case ∆ = 3 was also considered by Tishchenko [230]. For planar graphs with general
diameter D and with ∆ ≥ 4, the authors in [118] (see also [119]) apply a special case of
a theorem of Lipton and Tarjan [178], to show that

n∆,D(S0) ≤ (6D + 3)(2∆bD
2
c + 1) .

An interesting generalisation of the result of [159] to arbitrary surfaces was obtained by
Knor and Širáň [173]. Let S be an arbitrary surface (orientable or not) other than the
sphere, and let ∆S = 28(2 − χ(S))2 + 2. Then, for diameter D = 2 and any maximum
degree ∆ ≥ ∆S ,

n∆,2(S) = n∆,2(S0) = b3

2
∆c + 1.

The striking fact here is that this bound is, for ∆ ≥ ∆S , independent of the surface S
and is the same as for the plane! The bound can therefore be considered to be the surface
Moore bound for ∆ ≥ ∆S . In [173], it is also shown that, for all ∆ ≥ ∆S , there exist
triangulations of S of diameter 2, maximum degree ∆, and order b(3/2)∆c+1; moreover,
these ‘surface Moore graphs’ are not unique. The largest order of graphs of diameter 2 and
degree at most 6 on surfaces with Euler characteristic ≥ 0 was determined by Tishchenko
[231].

Šiagiová and Simanjuntak [217] considered bounds on the order of graphs of arbitrary
maximum degree ∆ ≥ 3 and arbitrary diameter D, embeddable in a general surface of
Euler genus ε. Setting cS,D = (6D(ε+ 1) + 3), their result can be stated in the form

∆((∆ − 1)b
D
2
c − 2)

∆ − 2
< n∆,D(S) ≤ cS,D

∆((∆ − 1)b
D
2
c − 2)

∆ − 2
.

In view of these bounds, the authors of [217] raise the natural question of the existence
and the value of the limit of n∆,D(S)/∆bD/2c as ∆ → ∞.

2.5 Related topics

The relationships between parameters such as order, diameter, minimum degree and max-
imum degree have been considered by Chung [84]. She reviews the status of a number
of interrelated problems on diameters of graphs, including: (i) degree/diameter problem,
(ii) order/degree problem, (iii) given n,D,D

′
, s, determine the minimum number of edges

in a graph on n vertices of diameter D having the property that after removing any s
or fewer edges the remaining graph has diameter at most D

′
, (iv) problem (iii) with a

constraint on the maximum degree, (v) for a given graph, find the optimum way to add
t edges so that the resulting graph has minimum diameter, and (vi) for a given graph,
find the optimum way to add t vertex disjoint edges to reduce the diameter as much as
possible.
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A variety of interrelated diameter problems are discussed by Chung in [83], including
determining extremal graphs of bounded degrees and small diameters, finding orientations
for undirected or mixed graphs to minimise diameters, investigating diameter bounds for
networks with possible node and link failures, and algorithmic aspects of determining the
diameters of graphs.

In her study of properties of eigenvalues of the adjacency matrix of a graph, Chung [85]
proved that the second largest eigenvalue (in absolute value) λ is related to the diameter
D by means of the inequality

D ≤ dlog(n− 1)/log(∆/λ)e.

Bermond and Bollobás [39] studied the following extremal problem: Given integers n, D,
D

′
, ∆, k and l, determine or estimate the minimum number of edges in a graph G of

order n and with the following properties: (i) G has maximum degree at most ∆, (ii) the
diameter of G is at most D, (iii) if G

′
is obtained from G by suppressing any k of the

vertices or any l of the edges, the diameter of G
′
is at most D

′
.

Bollobás [57] considered another extremal problem on diameters: given diameter and
maximum degree, find the minimum number of edges.

Gómez and Escudero [145] investigated constructions of graphs with a given diameter D
and a given maximum degree ∆ and having a large number of vertices, whose edges can
be well coloured by exactly p colours. They include a table of such digraphs for D ≤ 10
and p ≤ 16.

The two additional parameters that have been considered most systematically in rela-
tion with the degree/diameter problem are girth (= length of the shortest cycle) and
connectivity; we consider them in separate subsections.

2.5.1 Girth

Biggs [55] studied the number of vertices of a regular graph whose girth and degree are
given. If the degree is D ≥ 3 and girth g = 2r + 1, r ≥ 2, then there is a simple lower
bound

n0(g,D) = 1 +
D

D − 2
((D − 1)r − 1)

for the number of vertices. It has been proved by Bannai and Ito [19], and by Damerell
[95], that the bound can be attained only when g = 5 and D = 3, 7 or 57. For related
work, see also Biggs and Ito [56].

On the other hand, attempts to find general constructions for graphs with given girth and
degree have yielded only much larger graphs than the lower bound. Bollobás [57] gives
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an overview of the problem and presents open questions regarding the behaviour of the
number of excess vertices n−n0(g,D), where n is the smallest possible order. Cubic (that
is, trivalent) graphs of a given girth and with the smallest possible number of vertices have
been known as cages. For a survey article about cages, we recommend Wong [236]; for
latest results, the interested reader should consult Exoo [113].

Using matrix theory, Bannai and Itoh [20] proved that there do not exist any regular
graphs with excess 1 and girth 2r + 1 ≥ 5, and that, for r ≥ 3, there are no antipodal
regular graphs with diameter r + 1 and girth 2r + 1.

Dutton and Brigham [108] gave upper bounds for the maximum number of edges e possible
in a graph depending upon its order n, girth g (and sometimes minimum degree δ).

2.5.2 Connectivity

Chung, Delorme and Solé [86] define the k-diameter of a graph G as the largest pairwise
minimum distance of a set of k vertices in G, i.e., the best possible distance of a code of
size k in G. They study a function N(k,∆, D), the largest size of a graph of degree at
most ∆ and k-diameter D, and give constructions of large graphs with given degree and
k-diameter. They also give upper bounds for the eigenvalues, and new lower bounds on
spectral multiplicity.

A parameter which is believed to be particularly important in networks is the reliability
of the network: it is desirable that if some stations (resp., branches) are unable to work,
the message can still be always transmitted. This corresponds to the connectivity (resp.,
edge-connectivity) of the associated graph. It is well known that the connectivity is less
than or equal to the edge-connectivity, which is less than or equal to the minimum degree
of the graph.

Seidman [210] gives an upper bound for the diameter of a connected graph in terms of
its number of vertices, minimum degree and connectivity. Earlier results in this direction
were also obtained by Watkins [233] and Kramer [175].

Bauer, Boesch, Suffel and Tindell [36] introduced the notion of super-λ graphs for the
study of network reliability. A graph is super-λ if every edge cut of minimum size is an
edge cut isolating a vertex. Soneoka [225] surveyed sufficient conditions for connectivity
or edge-connectivity to be equal to the minimum degree. Additionally, the author proved
a sufficient condition for super-λ in terms of the diameter D, order n, minimum degree δ
and maximum degree ∆. He proves that a graph is super-λ if

n ≥ δ(((∆ − 1)D−1 − 1)/(∆ − 2) + 1) + (∆ − 1)D−1.

The bounds are best possible for graphs with diameter 2,3,4 and 6.
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Fiol [120] considers the relation between connectivity (resp., superconnectivity) and other
parameters of a graph G, namely, its order n, minimum degree, maximum degree, diam-
eter, and girth.

Using the same parameters, Balbuena, Carmona, Fábrega and Fiol [17] show that the con-
nectivity, as well as arc-connectivity, of a bipartite graph is maximum possible, provided
that n is large enough.

Quaife [204] gives an overview and some new results concerning the optimisation problem
of the order of a graph given maximum degree, diameter and another parameter µ which
expresses a redundancy. An undirected finite graph G is a (∆, D, µ)-graph if, for each pair
of distinct vertices of G, there exist at least µ edge-disjoint paths joining these vertices,
each path consisting of k or fewer edges. The original (∆, D) problem is then the (∆, D, 1)
problem.

Other papers relating the order of a graph, its maximum degree and diameter (and pos-
sibly other parameters) with the connectivity of a graph, include the studies by Fiol
[120, 121], Fiol, Fábrega and Escudero [123], Bermond, Homobono and Peyrat [51], [52].
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3 Part 2: Directed graphs

3.1 Moore digraphs

As in the case of undirected graphs, there is a natural upper bound nd,k on the order of
directed graphs (digraphs), given maximum out-degree d and diameter k. For any given
vertex v of a digraph G, we can count the number of vertices at a particular distance from
that vertex. Let ni, for 0 ≤ i ≤ k, be the number of vertices at distance i from v. Then
ni ≤ di, for 0 ≤ i ≤ k, and consequently,

nd,k =
k∑

i=0

ni ≤ 1 + d+ d2 + . . .+ dk

=

{
dk+1−1

d−1
if d > 1

k + 1 if d = 1
(8)

The right-hand side of (8), denoted by Md,k, is called the Moore bound for digraphs. If
the equality sign holds in (8) then the digraph is called a Moore digraph.

It is well known that Moore digraphs exist only in the trivial cases when d = 1 (directed
cycles of length k + 1, Ck+1, for any k ≥ 1) or k = 1 (complete digraphs of order d + 1,
Kd+1, for any d ≥ 1). This was first proved by Plesńık and Znám in 1974 [203] and later
independently by Bridges and Toueg who presented in 1980 a short and very elegant proof
[67].

Throughout, a digraph of maximum out-degree d and diameter k will be referred to as
(d, k)-digraph. Since there are no Moore (d, k)-digraphs for d ≥ 2 and k ≥ 2, the study
of the existence of large digraphs focuses on (d, k)-digraphs whose order is close to the
Moore bound, that is, digraphs of order n = Md,k − δ, where the defect δ is as small as
possible.

3.2 Digraphs of order close to Moore bound

We start this section with a survey of the existence of digraphs of order one less than the
Moore bound, that is, with (d, k)-digraphs of defect one; such digraphs are alternatively
called almost Moore digraphs.

For the diameter k = 2, line digraphs of complete digraphs are examples of almost Moore
digraphs for any d ≥ 2, showing that nd,2 = Md,2 − 1. Interestingly, for out-degree d = 2,
there are exactly three non-isomorphic diregular digraphs of order M2,2 − 1: the line
digraph of K3 plus two other digraphs (cf [184]), see Fig. 5. However, for maximum
out-degree d ≥ 3, Gimbert [138, 140] completely settled the classification problem for
diameter 2 when he proved that line digraphs of complete digraphs are the only almost
Moore digraphs.
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Figure 5: Three non-isomorphic diregular digraphs of order M2,2 − 1.

On the other hand, focusing on small out-degree instead of diameter, Miller and Fris [184]
proved that there are no almost Moore digraphs of maximum out-degree 2, for any k ≥ 3.
Moreover, a recent result of Baskoro, Miller, Širáň and Sutton [34] shows that there are
no almost Moore digraphs of maximum out-degree 3 and any diameter greater than or
equal to 3. The question of whether or not the equality can hold in nd,k ≤ Md,k − 1, for
d ≥ 4 and k ≥ 3, is completely open.

The study of digraphs of defect 2 has so far concentrated on digraphs of maximum out-
degree d = 2. In the case of diameter k = 2, it was shown by Miller [182] that there
are exactly five non-isomorphic diregular digraphs of defect 2. In [182], Miller proved the
non-existence of digraphs of defect two for out-degree 2 and diameter k ≥ 3 by deriving a
necessary condition, namely, that k+1 must divide 2(2k+1−3), the number of arcs in the
digraph of defect 2. Interestingly, this condition excludes many values of k. For example,
for 3 ≤ k ≤ 107 there are only two values (k = 274485 and k = 5035921) for which the
divisibility condition holds. Consequently, for all but these two values of k, 3 ≤ k ≤ 107,
it has been known for some time that digraphs of defect 2 do not exist for out-degree
d = 2. Miller and Širáň [187] improved this result by showing that digraphs of defect 2
do not exist for out-degree d = 2 and all k ≥ 3.

For the remaining values of k ≥ 3 and d ≥ 3, the question of whether digraphs of defect
2 exist or not remains completely open; for examples of recent work, see Miller et al.
[185, 187]. Our current knowledge of the upper bound on the order of digraphs of out-
degree d and diameter k is summarised in Table 3.

A number of structural and non-existence results concerning almost Moore digraphs (the
(d, k)-digraphs of defect one) are based on the following concept. If G is an almost Moore
digraph then for each vertex v ∈ V (G) there exists exactly one vertex, denoted by r(v)
and called the repeat of v, such that there are exactly two v → r(v) walks of length at
most k. If S is a set (resp. multiset) of vertices then r(S) is the set or a multiset of
all the repeats of all the elements of S. We denote by N+(u) the set (or multiset) of
the out-neighbours of a vertex u, and we denote by N−(u) the set (or multiset) of the
in-neighbours of u.

If the almost Moore digraph G is diregular then the map r that assigns to each vertex
v ∈ V (G) its repeat r(v) is an automorphism of G. This follows from the Neighbourhood
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Diameter k Degree d Upper Bound of order nd,k

k = 1 all d ≥ 1 Md,1

k = 2 d = 1 M1,2

all d ≥ 2 Md,2 − 1

k ≥ 3 d = 1 M1,k

d = 2 M2,k − 3

d = 3 M3,k − 2

all d ≥ 4 Md,k − 1

Table 3: Upper bounds on the order of digraphs of degree d and diameter k.

Lemma of Baskoro, Miller, Plesńık and Znám [31] which asserts thatN+(r(v)) = r(N+(v))
andN−(r(v)) = r(N−(v)) for any vertex v of a diregular almost Moore digraph. Moreover,
the permutation matrix P associated with the automorphism r (viewed as a permutation
on the vertex set of the digraph) satisfies the equation

I + A+ A2 + . . .+ Ak = J + P,

where A is the adjacency matrix of G and J denotes the n× n matrix of all 1’s.

The rest of the results mentioned in this section have been proved with the help of repeats
(often combined with other techniques, most notably, matrix methods).

Miller and Fris [184] proved that there are no almost Moore digraphs for d = 2 and k ≥ 3.

Baskoro, Miller, Plesńık and Znám [31] gave a necessary divisibility condition for the
existence of (diregular) almost Moore digraphs of degree 3, namely that if a diregular
almost Moore digraph of degree 3 and diameter k ≥ 3 exists then k+ 1 divides 9

2
(3k − 1).

Using this condition they deduce that such digraphs do not exist for infinitely many values
of the diameter (if k is odd or if 27 divides k + 1).

Baskoro, Miller, Plesńık and Znám [30] considered diregular almost Moore digraphs of
diameter 2. Using the eigenvalues of adjacency matrices, they give several necessary
conditions for the existence of such digraphs. For degree 3, they prove that there is no
such digraph other than the line digraph of the complete digraph K4 (a Kautz digraph).

For diregular digraphs, Baskoro, Miller and Plesńık [32] gave various properties of re-
peats and structural results involving repeats and especially selfrepeats (vertices for which
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r(v) = v. These culminate in the theorem stating that for d ≥ 3, k ≥ 3, an almost Moore
digraph contains either no selfrepeats or exactly k selfrepeats, that is, an almost Moore
digraph contains at most one Ck.

In [33] Baskoro, Miller and Plesńık gave further necessary conditions for the existence of
almost Moore digraphs. They consider the cycle structure of the permutation r (repeat)
and find that certain induced subdigraphs in a diregular almost Moore digraph are either
cycles or, more interestingly, smaller almost Moore digraphs. For k = 2 and degree
2 ≤ d ≤ 12 they show that if there is a C2 then every vertex lies on a C2 (that is, all
vertices are selfrepeats or none is).

Baskoro, Miller and Širáň [35] studied almost Moore digraphs of degree 3 and found that
such a digraph cannot be a Cayley digraph of an abelian group.

Gimbert [139] dealt with the problem of (h, k)-digraphs, where there is a unique directed
walk of length at least h and at most k between any two vertices of the digraph and found
that such digraphs exist only when h = k and h = k − 1 if d ≥ 2. In the cases of d = 2
or k = 2, it is shown, using algebraic techniques, that the line digraph L(Kd+1) of the
complete digraph Kd+1 is the only (1, 2)-digraph of degree d, that is, the only digraph
whose adjacency matrix A satisfies the equation A+A2 = J . As a consequence, there does
not exist any other almost Moore digraph of diameter k = 2 with all selfrepeat vertices
apart from the Kautz digraph.

Gimbert [138] used the characteristic polynomial of an almost Moore digraph to obtain
some new necessary conditions for the cycle structure of the automorphism r of such a
digraph. In particular, he applied the results to the cases of diameters 2 and 3 and proved
that there is exactly one almost Moore digraph for d = 4 and k = 2, the line digraph of
K5.

Inspired by the technique of Bridges and Toueg [67], Baskoro, Miller, Plesńık and Znám
[31] used matrix theory (the eigenvalues of the adjacency matrix) to prove that there is
no diregular almost Moore digraph of degree ≥ 2, diameter k ≥ 3 and with every vertex
a selfrepeat, that is, every vertex on a directed cycle Ck. Note that Bosák [61] already
studied diregular digraphs satisfying the more general matrix equation

Aa + Aa+1 + . . .+ Ab = J, a ≤ b,

and he proved that for d > 1 such digraphs exist only if either b = a (de Bruijn digraphs
[69]) or b = a + 1 (Kautz digraphs [170, 171]). Thus the result of [31] is only the case
a = 1 and b = k ≥ 3 but we mention it here because the proof is much simpler than
Bosák’s proof.

Cholily, Baskoro and Uttunggadewa [81] gave some conditions for the existence of al-
most Moore digraphs containing selfrepeat. The smallest positive integer p such that
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the composition rp(u) = u is called the order of u. Baskoro, Cholily and Miller [26, 27]
investigated the number of vertex orders present in an almost Moore digraphs containing
selfrepeat. An exact formula for the number of all vertex orders in a graph is given, based
on the vertex orders of the outneighbours of any selfrepeat vertex.

3.3 Diregularity of digraphs close to Moore bound

We shall next consider the question of diregularity of digraphs, given maximum out-degree
d and diameter k. To get a more complete picture, we make a short detour and briefly
consider the much simpler issue of the regularity of undirected graphs.

For undirected graphs, if there is a vertex of degree less than ∆ then the order of the
graph cannot be more than

n∆,D =
D∑

i=0

ni ≤ 1 + (∆ − 1) + (∆ − 1)(∆ − 1) + . . .+ (∆ − 1)(∆ − 1)D−1

= 1 + (∆ − 1)(1 + (∆ − 1) + . . .+ (∆ − 1)D−1)

=

{
1 + (∆ − 1) (∆−1)D−1

∆−2
= M∆,D − (∆−1)D−1

∆−2
if ∆ > 2

D + 1 = M2,D −D if ∆ = 2
(9)

Obviously, it follows that graphs with the number of vertices ‘close’ to the Moore bound
cannot have any vertex of degree less than ∆, that is, the graphs are necessarily regular,
end of story. However, for directed graphs the situation is much more interesting.

The only strongly connected digraph of out-degree d = 1 is the directed cycle Ck+1. For
d > 1, if the maximum out-degree is d and if there is a vertex of out-degree less than d
then we have

nd,k =
k∑

i=0

ni ≤ 1 + (d− 1) + (d− 1)d+ . . .+ (d− 1)dk−1

= (1 + d+ d2 + . . .+ dk) − (1 + d+ d2 + . . .+ dk−1)

= Md,k −Md,k−1. (10)

Therefore, a digraph of maximum out-degree d ≥ 2, diameter k and order n = Md,k − δ
must be out-regular if δ < Md,k−1. However, establishing the regularity or otherwise of
the in-degree of digraphs (given maximum out-degree) is not so straightforward. Indeed,
there exist digraphs of out-degree d and diameter k, whose order is just two or three
less than the Moore bound and in which not all vertices have the same in-degree. These
graphs are out-regular but not in-regular.

For example, when d = 2, k = 2, n = 5 (that is, defect 2), there are 9 non-isomorphic
digraphs. Of these, 5 are diregular (see Fig. 6) and 4 are non-diregular (see Fig. 7).
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Figure 6: Five non-isomorphic diregular digraphs of order M2,2 − 2.

Figure 7: Four non-isomorphic non-diregular digraphs of order M2,2 − 2.
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It is interesting to note that there are more diregular digraphs than non-diregular ones
for the parameters n = 5, d = 2, k = 2, while for the next larger digraphs of defect 2,
namely, when n = 11, d = 3, k = 2, the situation is quite different: there are at least
four non-isomorphic non-diregular digraphs [220] but only one diregular digraph [23] (see
Figs. 8 and 9.

Figure 8: The unique diregular digraph of order M3,2 − 2.

Miller, Gimbert, Širáň and Slamin [185] proved that every almost Moore digraph is direg-
ular. Miller and Slamin [188] proved that every digraph of defect 2, maximum out-degree
2 and diameter k ≥ 3 is diregular. Slamin, Baskoro and Miller [221] studied diregularity
of digraphs of defect 2 and maximum out-degree 3. Miller and Slamin conjecture that all
defect 2 digraphs of maximum out-degree d ≥ 2 are diregular, provided k ≥ 3.

The question of diregularity or otherwise of digraphs with defect greater than 2 is com-
pletely open.

3.4 Constructions of large digraphs

The best lower bound on the order of digraphs of maximum out-degree d and diameter k
is as follows. For maximum out-degree d ≥ 2 and diameter k ≥ 4,

nd,k ≥ 25 × 2k−4. (11)

This lower bound is obtained from the Alegre digraph [7] which is a diregular digraph of
degree 2, diameter 4 and order 25 (see Fig. 10), and from its iterated line digraphs. For
the remaining values of maximum out-degree and diameter, a general lower bound is

nd,k ≥ dk + dk−1. (12)

This bound is obtained from Kautz digraphs, that is, the diregular digraphs of degree d,
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Figure 9: Four non-isomorphic non-diregular digraphs of order M3,2 − 2.
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Figure 10: Alegre digraph.

diameter k and order dk + dk−1 [170]. Kautz digraphs, although defined in the literature
in various ways, are just iterated line digraphs of complete digraphs (as an example, see
the Kautz digraph on 24 vertices of degree 2 and diameter 4, in Fig. 11). Line digraph
iterations were also studied by Fiol, Alegre and Yebra [122]; for a nice partial line digraph
technique, see Fiol and Lladó [129]. For an example of recent work related to Kautz and
de Bruijn digraphs, we refer to Barth and Heydemann [21].

In [163, 164], Imase and Itoh considered the minimum diameter problem and the lower
bound for diameter k, given the number of nodes n and the in- and out-degree of each
node being d or less. From the Moore bound, they obtained

k ≥ dlogd(n(d− 1) + 1)e − 1 = l(n, d),

where 1 < d ≤ n− 1 and dxe denotes the minimum integer not smaller than x. In [163],
they gave the following construction of a (d, k)-digraph of order n with diameter k =
dlogdne. For any n and d (1 < d ≤ n−1), the vertex set of the digraph is {0, 1, . . . , n−1},
and there is an arc from i to j if and only if j ≡ id + q (mod n), q = 0, 1, . . . , d− 1. The

diameter of the digraph is either equal to l(n, d) or is at most one more. If dk−1
d−1

≤ n ≤ dk

or if n = dk−b(db + 1), b odd, b ≤ m, then the construction achieves diameter equal to the
lower bound l(n, d).

The construction by Imase and Itoh [164] was improved by Baskoro and Miller [28] who
produced a construction for digraphs of dk−b(db + 1) vertices for any b (note that the
construction in [164] worked only for b odd). The procedure makes use of de Bruijn
digraphs [69]. For other constructions based on adjacency defined by congruence relations,
we refer to Opatrný [199, 200], and to Gómez, Padró and Perennes [151].
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Figure 11: Kautz digraph.

Examples of large digraphs of given degree and diameter have also been constructed by
heuristic search, see e.g., Allwright [9].

The lifting method described in Subsection 2.3.2 is suitable for constructing digraphs as
well as undirected graphs. In fact, most of the concepts introduced in Subsection 2.3.2
apply to digraphs with no or just minor changes. Let G be a base digraph with arc set
A(G) and let Γ be a finite group. This time, a voltage assignment on G in Γ is any
mapping α : A(G) → Γ; no extra condition on voltages is needed because edge directions
are a part of the description of the digraph G. The definition of the lift Gα is formally
the same as in Subsection 2.3.2, and the lift is automatically a digraph.

For an example, we refer to Fig. 12 that shows how the Alegre digraph can be obtained
as a lift of a base digraph of order 5, endowed with voltages in the group Z5.

Lifts of graphs implicitly appear in a number of constructions of large (d, k)-digraphs. To
our knowledge, the first to explicitly use lifts of graphs were Annexstein, Baumslag and
Rosenberg [10] in connection with their group action graphs. Such graphs were then later
studied by Espona and Serra [110] to produce large Cayley (d, k)-digraphs based on the
so-called de Bruijn networks. We recall that, given a group Γ and an arbitrary generating
sequence Y of elements y1, y2, . . . , yd of Γ, the Cayley digraph C(Γ, Y ) has vertex set Γ,
and for each g ∈ Γ and each yi ∈ Y , there is a directed edge from g to gyi.

We point out that the role of lifts in the context of digraphs is similar to the situation we
have encountered in undirected graphs, and the reasons are essentially the same. To name
a few of the advantages of lifts, the diameter of the lifted digraph can be expressed in terms
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Figure 12: A base graph G with voltage assignment in Z5 and its lift, the Alegre digraph.
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of voltages on walks of the base digraph [25], which can be used to design efficient diameter-
checking algorithms. Further, if a digraph contains a non-trivial group of automorphisms
acting freely on its vertex set, then the digraph is a lift of a smaller digraph. This remark,
which directly follows from [153], applies to most currently known largest examples of
(d, k)-digraphs, and so most of them can be described as lifts. Likewise, all constructions
where incidence is defined by linear congruences are, in fact, lifting constructions.

Any Cayley digraph C(Γ, S) is a lift of a single-vertex digraph (with |S| directed loops
carrying voltages from the generating set S). Additionally, quite complex Cayley digraphs
that have appeared in the directed version of the degree/diameter problem (such as the
ones of certain semidirect products of Abelian groups considered in [105]) can be described
as ordinary lifts of smaller Cayley digraphs, with voltages in Abelian (mostly cyclic)
groups; see [66]. As regards transitivity, convenient sufficient conditions can be extracted
from [66] for a lift to be a vertex transitive (or a Cayley) digraph, which is suitable for
producing large vertex transitive (d, k)-digraphs by lifts.

A theoretical background for lifts in the study of large (d, k)-digraphs can be found in
Baskoro et al. [25] and Branković et al. [66]. Some of the results of [25] were in particular
cases strengthened by Zlatoš [242], who proved several upper bounds on the diameter of
the lift in terms of some properties of the base digraph and the voltage group. A number
of his results give significantly improved upper bounds when the digraph is a Cayley
digraph and the voltage group is abelian.

Table 4 gives a summary of the current largest known digraphs for maximum out-degree
d ≤ 13 and diameter k ≤ 11.

3.5 Restricted versions of the degree/diameter problem

Unlike the undirected case, the restrictions of the degree/diameter problem for digraphs
that have been considered in the literature are mostly connected with vertex transitivity.
Issues such as biparticity and connectivity have received less attention so far.

3.5.1 Vertex-transitive digraphs

Let vtd,k be the largest order of a vertex-transitive digraph of maximum out-degree d and
diameter k. Obviously, we have vtd,k = Md,k if d = 1 or if k = 1. Moreover, as line
digraphs of complete digraphs are vertex-transitive, we also have vtd,2 = Md,2 − 1, for
all d ≥ 2. Apart from this, there do not seem to be any general upper bounds on vtd,k.
Constructions that yield lower bounds on vtd,k rely mostly on coset graphs or on certain
compositions.

Let Γ be a finite group, let Λ be a subgroup of Γ, and let X be a set of distinct Λ-coset
representatives, such that Γ is generated by Λ ∪ X, X ∩ Λ = ∅, and ΛXΛ ⊆ XΛ. The
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k 2 3 4 5 6 7 8 9 10 11
d

2 6 12 25 50 100 200 400 800 1 600 3 200

3 12 36 108 324 972 2 916 8 748 26 244 78 732 236 196

4 20 80 320 1 280 5 120 20 480 81 920 327 680 1 310 720 5 242 880

5 30 150 750 3 750 18 750 93 750 468 750 2 343 750 11 718 750 58 593 750

6 42 252 1 512 9 072 54 432 326 592 1 959 552 11 757 312 70 543 872 423 263 232

7 56 392 2 744 19 208 134 456 941 192 6 588 344 46 118 408 322 828 856 2 259 801 992

8 72 576 4 608 36 864 294 912 2 359 296 18 874 368 150 994 944 1 207 959 552 9 663 676 416

9 90 810 7 290 65 610 590 490 5 314 410 47 829 690 430 467 210 3 874 204 890 34 867 844 010

10 110 1 100 11 000 110 000 1 100 000 11 000 000 110 000 000 1 100 000 000 11 000 000 000 110 000 000 000

11 132 1 452 15 972 175 692 1 932 612 21 258 732 233 846 052 2 572 306 572 28 295 372 292 311 249 095 212

12 156 1 872 22 464 269 568 3 234 816 38 817 792 465 813 504 5 589 762 048 67 077 144 576 804 925 734 912

13 182 2 366 30 758 399 854 5 198 102 67 575 326 878 479 238 11 420 230 094 148 462 991 222 1 930 018 885 886

Table 4: The order of the largest known digraphs of maximum out-degree d and diameter k.
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Cayley coset digraph Cos(Γ,Λ, X) has vertex set {gΛ; g ∈ Γ}, and there is an arc from
gΛ to hΛ if hΛ = gxΛ, for some x ∈ X. It is an easy exercise to prove that Cayley coset
graphs are well defined, |X|-diregular, connected, and vertex-transitive.

For a prominent example, let Γ = Sd+1 be the symmetric group acting on the set [d +
1] = {1, 2, . . . , d, d+ 1}, and let Λk be the subgroup of Γ that pointwise fixes the subset
[k] = {1, 2, . . . , k}, for some k, 2 ≤ k ≤ d. Further, for 2 ≤ i ≤ d + 1 let ξi be the cyclic
permutation (i . . . 21), and let X = {ξi; 2 ≤ i ≤ d + 1}. It can be checked that the
above conditions on Γ, Λ, and X are satisfied; the Cayley coset digraph Cos(Sd+1,Λk, X)
is known as a cycle prefix digraph (see Faber, Moore and Chen [115], and also Comellas
and Fiol [91]). The cycle prefix digraphs Cos(Sd+1,Λk, X) are (d, k)-digraphs of order
(d+ 1)!/(d+ 1− k)! and they yield most of the entries of the lower triangular part in the
table of largest known vertex-transitive (d, k)-digraphs (see end of this subsection). In
particular,

vtd,k ≥ (d+ 1)!/(d+ 1 − k)! if d ≥ k ≥ 3.

Moderate improvements of the above lower bound can be obtained by removing certain
adjacencies in the cycle prefix digraphs; for details we refer to [91].

We now give an example of a composition method [91]. We say that a digraph is k-
reachable if for every pair of its vertices u, v there exists a directed path from u to v of
length exactly k. For example, the Kautz digraphs of diameter k are (k + 1)-reachable,
and the cycle prefix (d, k)-digraphs are k-reachable for all k ≥ 3. Now, let G be a digraph
with vertex set V . Let n ≥ 2 and t ≥ 1 be integers. Form a new digraph Gn,t on the
vertex set Ztn × V n, with adjacencies given by

(i, v0, . . . , vi, . . . , vn−1) → (i+ j, v0, . . . , wi, . . . , vn−1),

where j ∈ {1, b}, for some b ∈ Ztn, all indices on the vertices of G taken mod n, and wi

adjacent from vi in G. This construction was introduced by Comellas and Fiol [91] who
also proved the following result: If G is a vertex-transitive d-diregular k-reachable digraph
then Gn,t is also a vertex-transitive digraph, diregular of degree 2d, of order nt|V |n, and
of diameter at most kn+ `, where ` is the diameter of the Cayley digraph C(Ztn, {1, b}).
The number b is then chosen to minimise `. If j is restricted to assume the value 1 only,
then the result is a vertex-transitive (d, k′)-digraph of order nt|V |n and of diameter at
most (k + t)n − 1. Both constructions yield certain record examples of vertex-transitive
digraphs of diameter between 7 and 11; we refer to [91] for details.

The current largest known orders of vertex-transitive digraphs for maximum out-degree
d ≤ 13 and diameter k ≤ 11 are presented in Table 5; for an earlier version of the table,
see Comellas and Fiol [91]. This table can be found on the website

“http://maite71.upc.es/grup de grafs/grafs/taula vsd.html”

which is updated regularly by Francesc Comellas.
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k 2 3 4 5 6 7 8 9 10 11
d

2 6 10 20 27 72 144 171 336 504 737

3 12 27 60 165 333 1 152 1 860 4 446 10 849 41 472

4 20 60 168 444 1 260 7 200 12 090 38 134 132 012 648 000

5 30 120 360 1 152 3 582 28 800 54 505 259 200 752 914 5 184 000

6 42 210 860 2 520 7 776 88 200 170 898 1 411 200 5 184 000 27 783 000

7 56 336 1 680 6 720 20 160 225 792 521 906 5 644 800 27 783 000 113 799 168

8 72 504 3 024 15 120 60 480 508 032 1 371 582 18 289 152 113 799 168 457 228 800

9 90 720 5 040 30 240 151 200 1 036 800 2 965 270 50 803 200 384 072 192 1 828 915 200

10 110 990 7 920 55 400 332 640 1 960 220 6 652 800 125 452 800 1 119 744 000 6 138 320 000

11 132 1 320 11 800 95 040 665 280 3 991 680 19 958 400 282 268 800 2 910 897 000 18 065 203 200

12 156 1 716 17 160 154 440 1 235 520 8 648 640 51 891 840 588 931 200 6 899 904 000 47 703 427 200

13 182 2 184 24 024 240 240 2 162 160 17 297 280 121 080 960 1 154 305 152 15 159 089 098 115 430 515 200

Table 5: The order of the largest known vertex-transitive digraphs of maximum out-degree d and diameter k.
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3.5.2 Cayley digraphs

Let Cd,k and ACd,k be the largest order of a Cayley digraph and a Cayley digraph of an
abelian group, respectively, of out-degree d and diameter k. Very little is known about
Cd,k in general. Clearly, Cd,1 = Md,1, and for k ≥ 3 we know only that Cd,k ≤ Md,k but
we can say a little more in the case when k = 2. As we know from [138], for d ≥ 3, we
have nd,2 = Md,2 − 1 and the unique digraph of out-degree d and diameter 2 is the line
digraph of the complete digraph on d+ 1 vertices.

As in the undirected case, the study of large abelian Cayley digraphs of a given out-degree
(equal to the number of elements in the generating set) and given diameter can be based
on a combination of group-theoretic and geometric ideas, whose genesis and background
have been explained in [107]. The starting point is again the fact that any finite abelian
group Γ with an arbitrary (not necessarily symmetric) generating set Y = {y1, . . . , yd} of
size d is a quotient group of the free abelian d-generator group Zd by a subgroup N (of
finite index) that is the kernel of the natural homomorphism Zd → Γ which sends the
unit vector ei ∈ Zd onto yi.

Since this time we are discussing directed graphs, and therefore in our Cayley digraphs
we cannot use an inverse of a generator (unless it belongs to Y ), in our quotient group
we are allowed to use only linear combinations of the vectors ei with non-negative integer
coefficients. Therefore, for any given diameter k, define

W ′
d,k = {(x1, . . . , xd) ∈ Zd; xi ≥ 0, x1 + . . .+ xd ≤ k}.

Then the Cayley digraph C(Γ, Y ) has diameter at most k if and only if W ′
d,k +N = Zd.

This allows us to conclude that |W ′
d,k| is an upper bound on ACd,k.

The geometric connection lies again in the fact that any subgroup N of Zd of finite index,
with the property W ′

d,k +N = Zd, determines a d-dimensional lattice that induces ‘shifts’
of the set W ′

d,k so that they completely cover the elements of Zd. We also recall that
the index [Zd : N ] = |Γ| (which gives a lower bound on ACd,k) is equal to the absolute
value of the determinant of the d-dimensional matrix formed by the d generating vectors
of N . This reduces the search for bounds on ACd,k to interesting and deep problems in
combinatorial geometry (cf. [107]).

Unlike the undirected case, an exact formula for |W ′
d,k| (which, as we know, is automati-

cally an upper bound on ACd,k) is a matter of easy counting and it forms the right hand
side of (13) below. A lower bound is much harder to obtain, and we present here the one
given in Dougherty and Faber [107], based on a deep study of lattice coverings. We give
both bounds as follows: There exists a constant c (not depending on d and k) such that
for any fixed d ≥ 2 and all k,

c

d!d(ln d)1+log2 e
kd +O(kd−1) ≤ ACd,k ≤

(
k + d

d

)
. (13)
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Note that the upper bound can be considered to be the abelian Cayley directed Moore
bound for abelian groups with d-element generating sets. Once again, this differs from the
Moore bound Md,k rather dramatically; if the number of generators d is fixed and k → ∞
then the right hand side of (13) has the form kd/d! +O(kd−1).

It should not come as a surprise that the exact values of ACd,k are difficult to determine.
With the help of lattice tilings, Dougherty and Faber [107] (and others, mainly Wong and
Coopersmith [235]) showed that

AC2,k = |W ′
2,k| = b(k + 2)2/3c.

For d = 3 and k ≥ 8, similar methods (see [107] for details and more references) yield the
bounds

0.084k3 +O(k2) ≤ AC3,k ≤ 3(k + 3)3/25.

A table of the current best values of AC3,k for k ≤ 30 appears in [107] as well.

Large Cayley digraphs can also be obtained by lifting [25, 66, 242]. As a representative
example, we briefly summarise the work of Espona and Serra [110]. Let G be a connected
diregular digraph of out-degree d and let F = {F1, F2, . . . , Fd} be a factorization of G
into directed factors Fi of in- and out-degree 1 (that is, each Fi is a union of directed
cycles, covering all vertices of G). Each factor Fi then defines, in a natural way, a
permutation φi of the vertex set of G, where φi(v) is the vertex adjacent from v in
the factor Fi. Let Γ be the permutation group generated by the permutations φ1, . . . , φd

and let X = {φ1, φ2, . . . , φd}. Then the Cayley digraph C(Γ, X) is a lift of the original
digraph G. We note that this procedure can easily be translated into the language of
voltage assignments on G.

It was pointed out in [110] that interesting large (d, k)-digraphs (such as butterfly di-
graphs) can be obtained by the above construction applied to various factorizations of the
de Bruijn digraphs. For more constructions of large Cayley digraphs of given degree and
diameter, see [4].

Since bounds on the diameter of a Cayley digraph in terms of a logarithm of the order of
the group are essentially the same as in the undirected case (Subsection 2.4.2), we do not
discuss them here.

3.5.3 Digraphs on surfaces

The planar version of the degree/diameter problem for digraphs was considered by Siman-
juntak and Miller [219]. They showed that a planar digraph of diameter 2 and maximum
out-degree d ≥ 41 cannot have more than 2d vertices and that this bound is the best
possible. They conjecture that the same bound holds also for d ≤ 40. The planar ver-
sion of the degree/diameter problem for k > 2 is totally open. Unlike in the undirected
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case, directed graphs embeddable on a fixed surface, other than the sphere, have not been
considered from the point of view of the degree/diameter problem.

3.6 Related topics

In the directed case it seems that less attention has been paid to topics closely related
to the ones presented in the previous sections. We therefore only consider separately the
connectivity issue, while other miscellaneous contributions are summed up in Subsection
3.6.2.

3.6.1 Connectivity

Homobono and Peyrat [161] considered the connectivity of the digraphs proposed by Imase
and Itoh. They proved that, provided the diameter is greater than 4, the connectivity
of these digraphs is d if n = k(d + 1) and gcd(n, d) > 1; and d − 1 otherwise. Imase,
Soneoka and Itoh earlier proved that the connectivity is greater than or equal to d − 1
if the graph’s diameter is greater than 4. Homobono and Peyrat’s paper improves upon
this result.

Imase, Soneoka and Okada [165] considered the relation between the diameter k and the
edge (resp., vertex) connectivity of digraphs. They found that diameter minimisation
results in maximising the connectivity and that all proposed small diameter digraphs
have a node connectivity either d− 1 or d.

A digraph is super-λ if every edge cut of minimum size is an edge cut isolating a vertex.
Soneoka [226] proved a sufficient condition for super-λ in terms of the diameter k, order n,
minimum out-degree δ and maximum out-degree d. He proves that a digraph is super-λ
if n ≥ δ((dk−1 − 1)/(d − 1) + 1) + dk−1. The bounds are the best possible for digraphs
with diameter 2 or 3. The sufficient conditions are satisfied by many well-known digraphs,
including the de Bruijn and Kautz digraphs.

Fiol [120] considers the relation between connectivity (resp., superconnectivity) and other
parameters of a digraph G, namely, its order n, minimum out-degree, maximum out-
degree, diameter, and a new parameter related to the number of short walks in G. Max-
imally connected and superconnected iterated line digraphs are characterised.

Fiol and Yebra [130] showed that the Moore-like bound for strongly connected bipartite
digraphs G = (V1 ∪ V2, A), d > 1,

|V1| + |V2| ≤ 2(dk+1 − 1)/(d2 − 1) for k odd;

|V1| + |V2| ≤ 2(dk+1 − d)/(d2 − 1) for k even

is attainable only when k = 2,3 or 4. The interested reader can find out more about
bipartite and almost bipartite Moore digraphs in studies by Fiol, Gimbert, Gómez and
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Wu [126], and Fiol and Gimbert [125]; for multipartite version, see Fiol, Gimbert and
Miller [127].

Balbuena, Carmona, Fábrega and Fiol [17] showed that the connectivity, as well as arc-
connectivity, of a bipartite digraph is the maximum possible, provided that n is large
enough.

Other papers relating the order of a digraph, its maximum out-degree and diameter (and
possibly other parameters) with the connectivity and/or super-connectivity of a digraph
include the studies by Fábrega and Fiol [116], Fiol [121] and Xu [237]. Along with
connectivity, modified concepts of diameter were considered, such as the k-diameter of
k-connected graphs studied by Xu and Xu [238], or the conditional diameter in supercon-
nected digraphs looked at by Balbuena, Fàbrega, Marcote and Pelayo [18].

3.6.2 Other related problems

Fiol, Lladó and Villar [128] considered the order/degree problem for digraphs; they con-
structed a family of digraphs with the smallest possible diameter, given order and maxi-
mum out-degree.

Aider [1] studied bipartite digraphs with maximum in- and out-degree d (> 1) and diam-
eter k. He showed that the order of such a digraph is at most

2
dk+1 − 1

d2 − 1
if k is odd;

2
dk+1 − d

d2 − 1
if k is even.

The author then finds some pairs d and k, for which there exist bipartite digraphs of
the given order (‘bipartite Moore digraphs’) and some pairs for which there are no such
bipartite digraphs. Additionally, a variety of properties of such digraphs are established.

Gómez, Morillo and Padró [150] consider (d, k, k
′
, s)-digraphs (digraphs with maximum

out-degree d and diameter k such that, after the deletion of any s of its vertices, the
resulting digraph has diameter at most k

′
). The authors’ goal is to find such bipartite

digraphs with order as large as possible. They give new families of digraphs satisfying a
Menger-type condition, namely, between any pair of non-adjacent vertices there are s+ 1
internally disjoint paths of length at most k

′
, and they obtain new families of bipartite

(d, k, k
′
, s)-digraphs with order very close to the upper bound.

Munoz and Gómez [192] continued this research and obtained new families of asymptoti-
cally optimal (d, k, k

′
, s)-digraphs.

Morillo, Fiol and Fábrega [190], Morillo, Fiol and Yebra [191], Comellas, Morillo and
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Fiol [94] used plane tessellations to construct families of bipartite digraphs of degree
two and with maximum order, minimum diameter, and minimum mean distance, defined
by k̄ =

∑
i,j∈V dij/n

2. The last parameter was also studied earlier by Wong [234], who
considered a subclass of digraphs in which the number of nodes is n and diameter is k;
he showed that the minimum values of diameter and the average distance are both of the
order of dd

√
n.

Knor [172] defines radially Moore digraphs as regular digraphs with radius s, diameter
k ≤ s+ 1 and the maximum possible number of nodes. He shows that, for every s and d,
there exists a regular radially Moore digraph of degree d and radius s. He also gives an
upper bound on the number of central nodes in a radially Moore digraph of degree 2.

Unilaterally connected digraphs were studied from the perspective of the degree/diameter
problem by Gómez, Canale and Munoz [143, 144].

Partially directed Moore graphs (also called mixed Moore graphs) were introduced and
investigated by Bosák [62]. Bosák [62] defines a partially directed Moore graph as a
simple, finite and homogeneous (each vertex is an endpoint of r undirected (two-way)
edges and is an origin and a terminal of z directed (one-way) edges, where r and z are
independent of the choice of a vertex) graph satisfying the condition: There exists exactly
one trail (an edge can be used only once and wrong way is not allowed) from any vertex
u to any vertex v of length at most the diameter. Bosák found divisibility conditions
concerning the distribution of undirected and directed edges in mixed Moore graphs of
diameter 2, and he produced some examples of mixed Moore graphs.

This line of research was continued by Nguyen, Miller and Gimbert [198] who proved the
equivalence of mixed tied graphs and mixed Moore graphs. See also Nguyen and Miller
[196]. It is shown that all proper mixed tied graphs are totally regular and that they do
not exist in the case when the diameter is greater than 2. They also proved that all the
known mixed Moore graphs of diameter 2 are unique.
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4 Conclusion

In this survey we have presented results and research directions concerning the degree/
diameter problem.

Here we give a list of some of the open problems in this area.

1. Does there exist a Moore graph of diameter 2 and degree 57?

2. At present we have only non-diregular examples of a digraph with n = 49, d = 2 and
k = 5. Does there exist a diregular version of a digraph with the same parameters
n, d, k?

3. Is nd,k monotonic in d and/or in k?

4. Find graphs (resp., digraphs) which have larger number of vertices than the currently
largest known graphs (resp., digraphs).

5. In particular, does the largest graph of diameter 2 and degree 6 have 32 or 33
vertices?

6. Answer the question of Bermond and Bollobás (end of Section 2.2), which asks if,
for each integer c > 0, there exist ∆ and D, such that n∆,D ≤M∆,D − c.

7. Prove or disprove the conjecture of Bollobás (Subsection 2.3.1), stating that for each
ε > 0, n∆,D > (1 − ε)∆D, for sufficiently large ∆ and D.

8. Is it true that n∆,D = vt∆,D, for infinitely many pairs of ∆ ≥ 3 and D ≥ 2?

9. Does there exist a radially Moore undirected graph for every diameter and degree?

10. Is there a mixed Moore graph of order 40, diameter 2, and such that each vertex is
incident with 3 undirected edges and each vertex is the starting point of 3 directed
arcs?

11. Prove the diregularity or otherwise of digraphs close to Moore bound for defect
greater than one.

12. Prove or disprove the following generalisation of the result of Knor and Širáň from
Subsection 2.4.5: For each surface S and for each D ≥ 2, there exist a constant ∆S
such that for each ∆ ≥ ∆S , we have n∆,D(S) = n∆,D(S0).

13. Motivated by the result of Šiagiová and Simanjuntak (Subsection 2.4.5), investigate
the existence of the limit of n∆,D(S)/∆bD/2c as ∆ → ∞.
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In conclusion, we would like to comment briefly on the relationships between the three
parameters that have featured heavily in this survey; namely, order, degree and diame-
ter. Throughout this survey, we have considered the degree/diameter problem, that is,
maximising the order of a graph, resp., digraph. However, considering the three parame-
ters of a graph: order, degree and diameter, there are two additional extremal problems
that arise if we optimise in turn each one of the parameters while holding the other two
parameters fixed, namely,

• Order/degree problem: Given natural numbers n and ∆, find the smallest possible
diameter Dn,∆ in a graph of order n and maximum degree ∆.

• Order/diameter problem: Given natural numbers n and D, find the smallest possible
maximum degree ∆n,D in a graph of order n and diameter D.

The statements of the directed version of the problems differ only in that ‘degree’ is
replaced by ‘out-degree.

For both undirected and directed cases, most of the attention has been given to the
degree/diameter problem, some attention has been received by the order/degree problem
but the order/diameter problem has been largely overlooked so far. For more details
concerning the three problems and their relationships, see [181, 188, 183].

Although we tried to include all references to the degree/diameter problem and other
research related to the Moore bounds, it is quite likely that we have accidentally or out
of ignorance left out some references that should have been included. We apologise for
any such oversights. Fortunately, this is a dynamic survey and we will be updating it
periodically. We will very much appreciate finding out about any omissions, as well as
new results in the degree/diameter problem and related topics.
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[147] J. Gómez, M.A. Fiol and O. Serra, On large (∆, D)-graphs, Discrete Mathematics
114 (1993) 219–235.
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[192] X. Munoz and J. Gómez, Asymptotically optimal (∆, D
′
, s)-digraphs, Ars Combin.

49 (1998) 97–111.

[193] M.H. Nguyen and M. Miller, Structural properties of graphs of diameter 2 with
maximal repeats, preprint.

[194] M.H. Nguyen and M. Miller, Towards a characterization of graphs of diameter 2
and defect 2, preprint.

[195] M.H. Nguyen and M. Miller, The nonexistence of certain graphs of diameter 2 and
defect 2, preprint.

[196] M.H. Nguyen and M. Miller, Moore bound for mixed networks, preprint.

[197] M.H. Nguyen and M. Miller, A classification of graphs of diameter 2 and defect 3,
preprint.

[198] M.H. Nguyen, M. Miller and J. Gimbert, On mixed Moore graphs, Discrete Math-
ematics, to appear.
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[202] J. Plesńık, One method for proving the impossibility of certain Moore graphs, Dis-
crete Mathematics 8 (1974) 363–376.
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