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EXTREMAL INTERPOLATORY PROBLEM OF FEJ ER TYPE FOR ALL
CLASSICAL WEIGHT FUNCTIONS *

PRZEMYSEAW RUTKAT AND RYSZARD SMARZEWSKI

Abstract. Several constructive solutions of interpolating probleshd-ejér, Egervary and Turan, connected
with the optimal, most economical and stable interpolatiom known for Jacobi, Hermite and Laguerre orthogonal
polynomials. In this paper we solve the interpolatory wesghproblem of Fejér type for all positive solutions of
the Pearson differential equation, which generate finiiaforite sequences of the classical orthogonal polynomials
More precisely, we establish that the Fejér problem is gemethis class of polynomials and present an elementary
unified proof of this fact. Next, these results are used tabdish a complete solution of the Egervary and Turan
interpolatory problem.
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1. Introduction and preliminaries. Letw (x) be a positive weight function on a finite
or infinite interval(a, b). This weight function is said to be classical, if it satisfies Pearson
differential equation

%[A(m)w(m)]:B(m)w(m), a<x<b,

and boundary conditions of the form

gﬁA(:c)w(:c) = lggrblA(:c)w(:r) =0,

where the polynomials
A(z) = ag + a1z + azz? andB (z) = by + by

are such tha#l (z) > 0 on (a,b) andb; # 0.
Moreover, letg, (), n = 0,1,..., denote the sequence of polynomials of degige
orthogonal with respect to the inner product

b
(f.9), = / f (@) g (@) w(2)de

in the Hilbert spacd.? (a,b), wherew (z) is a classical weight function. Additionally, if

there exists a finite or infinite,, such that the orthogonal polynomials(z) (0 < n < n,)
are solutions of the following Sturm-Liouville differeatiequation

(1.2) % A(z)w(x) %qn (x)} = w (x) g, (), a <z <b,

with the coefficients\,, equal to
A =nl(n—1)as+ b1],
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then the sequencg, (x) (0 <n < n,) is called classical; cf. Agarwal and Milovanovit
[1], Al-Salam [2], Koekoek et al. 22|, Lesky [31], Maroni [34], Mastroianni and Milo-
vanovit 35], Nikiforov and Uvarov B6] and Suetin 40]. Conversely, linearly independent
polynomial L2 (a, b)-solutions of the equatiofi..1) are orthogonal with respect to the clas-
sical weight functiono (x); cf. Bochner p], Lesky [30] and Koepf and Masjed-Jamei).
We note that the classical orthogonal polynomials wereedatbntinuous classical orthogo-
nal polynomials and extensively studied by Koekoek, Lesky Swarttouw in their recent
monograph?2].

It is interesting and important that the sequence of déviyat],ff)(x) (k<n<mn,) of
the classical orthogonal polynomials () (0 < n < n,,) is also the sequence of classical
polynomials, orthogonal with respect to the classical Wwefgnction

wy (z) = A¥ (2)w (z), a <z < b.

In this case the weight function;, (x) satisfies the Pearson differential equation of the form

d
(1.2) e [A(z)wg (z)] = [B(z) + kA (2)]wg (x), a <z < b,
where the coefficierti; + 2kas atx on the right-hand side should be distinct from zero for
k=0,1,---,n— 1. Moreover the derivative@(f“) (z) (k <n < n,) satisfy the following

Sturm-Liouville differential equation

d d
il = (k) _ (k)
T A(x) wy (x) dan (x) Akwr (2) @) (), a <z <b,

with coefficients
)\n,k = (n—k?) [(n—l—k— 1)a2+b1];

cf. Hahn [L5, Krall [ 25, 26, 27], Agarwal and Milovanovit I] and Mastroianni and Milo-
vanovic [35].

REMARK 1.1. In view of the six statementg){(f) from the proof of Lemm&.6 pre-
sented in Sectio, it is clear that the conditions, + 2kas # 0 (0 <k <n <n,,) are
satisfied, whenever the classical weightxz) admits the existence of classical orthogonal
polynomials of degree < n.,.

Itis important to note that there exist exactly six classpdp a linear change of variable,
of the classical orthogonal polynomials] page 93]. They can be expressed by the following
Rodrigues formula

Kn dn
w (x) dz”

Adn (l‘) -

[w(z) A" (2)], 0 <n < ny,

wherer,, # 0 are arbitrary constants. For the simplicity, we will usedvethe notation
wo (z) = w (x). We will also use the floor functiohz | which is the largest integer less than
or equal tox. Moreover we note that,, = +oo in the casesi), (ii) and (i) given below.
(i) Hermite classical orthogonal polynomiaigith (a,b) = (—o0,+o0), A(z) = 1,
B(x) =—2zand

wg (x) =e
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(i) Jacobi classical orthogonal polynomialshenever(a,b) = (—1,1), A(x) = 1 — a2,
Bx)=B-a—(a+B+2)z,a>-1,8>—-1and

wy, (z) = (1 —2)*F (14 2)7T .

(i) Laguerre classical orthogonal polynomialsrrespond tda, b) = (0, +o0), A (z) = z,
B(z)=a+1—2,a>-1and

(iv) The generalized Bessel classical orthogonal polynomjalgr) (0 < n < n,,) with
(a,b) = (0,400), A(x) = 2%, B(x) = ax + B, a < —1, a ¢ {-2,-3,...},
8> 0and

-«
wy, (z) = xo‘”k*Qe*g, Ny = { ) J .

(v) Jacobi classical orthogonal polynomiajs (z) (0 < n < n,,) on (0, +c0), whenever
(a,b) = (0,+00), A(z) =2+ 2, B(z)=2—-a)z+B+1,a#2,>—1and

B xftk |la-1
Wi (x)—m, Ny = B .

(vi) Pseudo-Jacobi classical orthogonal polynomigls(z) (0 <n < n,,) correspond to
(a,b) = (—o0,+00),a # 1,8 €R, ny = La — %J and

AB+CD$+BQ+D2
A% +C? A2 +C2’

A(x) =2 +2

B(AD — BC) +2(1 — a) (AB +CD)
A2+ C? ’

Bz)=2(1—-a)x+

—a+k
(A:C + 8)2 + (Cl‘ + D>2 eB arctan AztB

Cz+D

w (%) = (A2 +C2) ’

whereA, B, C, D are real parameters such that

AD — BC > 0andA? +C? > 0.

In Section? of this paper we state our main results, which are connedtbdhve interpo-
latory problems originated by Fejét]] and Egervary and Tura®[10]. These problems can
be formulated for each classical weight functioriz) on a finite or inifinte intervala, b).
For this purpose let () = A () w (x) and consider the weighted norm

Ny, (X1, yxn) = sup wy () Ay (T30, ,2p), a <1 < -+ < @y < b,
a<x<b
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of the weighted Lebesgue type function

n 2
Awy (521, 20) = Z li () 7

of the interpolating Hermite operator

~ f () i ()

w1 (l‘k)

(an) (m) = wy (x)

?

k=1

where the fundamental Lagrange interpolating polynonijals) are equal to

o Pn ()
0 = G v o)
with
po(@)=T[@—2), Pl (n) = J] (ex — ).
i=1 i=1, ik

Note that this operator satisfies the interpolating coodgiof the form

(an) (xl) =f (xl)v (an)l (xl) =0,1=1,---,n,

whenevep,, (x) satisfies the Sturm-Liouville differential equation1) in (a,b).

The Fejér problem is equivalent to finding points . . . , z,, for which the weightedv, -
normA,, (z1,--- ,z,) attains its minimal possible value equalltdt was a great discovery
of Fejér [L1], that the unique solution of this problem gives the roots - - , x,, of the clas-
sical Legendre orthogonal polynomials correspondin@utd) = (—1,1), w(z) = 1 and
wy () = 1 — 22, After that Karlin and Studder2[l] used the von Neumann’s Minimax The-
orem to solve the Fejér problem for Hermite, Jacobi and keagupolynomials. Other more
elementary proofs of their results were given by Bal&spd Lau and Studder28, 29, to-
gether with some new results for non-classical weights. l&stietwo references provide also
a good summary of the Fejér problem. It should be noticetisineeral interesting modifica-
tions of the Fejér problem were studied recently by Lubyng?], Szabo 1] and Horvath
[17,18]. These papers include also extensive references on tlecsub

Note that each Lagrange fundamental polynomiék) is a unique polynomial of degree
n — 1 which satisfies interpolating conditions

wheredy; denotes the Kronecker delta. These conditions do not gtesréime uniqueness of
I, (x) without the additional assumption that(x) should be a polynomial of degree— 1.
Below we denote bfk (x) any polynomial of arbitrary degredeg (lAk (m)) > n — 1 for
which the conditiong1.3) hold. Then the polynomial

n Z;f (l‘)
1

le (l‘) = Zykw (xk)v

satisfies the interpolating conditions

a<x <--<mpH <by

Quy (1‘2) -
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Further, following P, 10, 21], the interpolatory system of ponnomielAl,s(a:), k=1,---,n,
is said to baw, -stable if the inequality

n =
Iy ()
< <
0 <w(x) kg_l ykwl @) = 1I§nkzg<nyk, a<ux<b,

holds for all nonnegative real numbers - - - , y,,. Additionally, if the sum
> deg Ik (2))
k=1

of degrees of ponnomiaEc (x) is minimal, then theu, -stable interpolatory syste% (),

k = 1,---,n, is called the most economica4,[9, 10, 19, 20, 21]. It is interesting that
the Fejér problem can be easily applied to solve the proldefinding thew,-stable and
the most economical interpolatory systems. This problers evé@ginated by Egervary and
Turan, who established it for Legendre and Hermite polyiadsrin [9, 10]. Next, this prob-
lem was investigated in a series of papers of Baldysuid Joo 9, 20] for the Jacobi and
Laguerre polynomials. It should be noticed that the intéatog problems of Fejér, Egervary
and Turan have found several applications in the area ghpohial approximation and inter-
polation of functions and in numerical analysis; cf. e.8, 1, 35, 40, 42].

Finally, in Section3 we present a new elementary unified proof of a theorem, which
completes the solution of the Fejér problebi][for all classical orthogonal polynomials. It
is inspired by the papers of Balaz3,[Job [19, 20] and our recent papers on the univariate
and multivariate inequalities of Chernoff typgd 39 and on the electrostatic equilibrium
problem B7] in the class of all classical orthogonal polynomials. Néatlowing Job [L9,

20] we apply this result to complete the solution of the Egeynend Turan problem for all
classical weight functions, which satisfy the Pearson ggona

2. Main results and auxiliary lemmas. The first of our theorems provides a complete
solution of the Fejér problem in the class of all classicdhagonal polynomials. In the
case of orthogonal polynomials of Hermite, Jacobi and Lagumentioned inif, (i) and
(iii) of Sectionl, the sufficiency part of this theorem reduces to Theorems#414 4.3 from
the monograph of Karlin and Studde®l] chapter X]. It is new for the remaining classical
orthogonal polynomialsiy), (v) and {i) of Sectionl. Moreover, the necessity part of the
theorem is also new.

THEOREM 2.1. Let g, (x) be the classical polynomial, orthogonal with respect to a
classical weight functiomw (z) on (a, b). Then we have

a<zl<i_r_l_f<2”<bAw1 (Zla"' 7271) = Awl (Zla"' axn) =1

for somer; < --- < @, in (a,b) ifand only ifz; < --- < a,, are the roots ofy, (x) in the
interval (a, b).

In view of formula(1.2), Remarkl.1and Theoren2.1, we directly derive the following
corollary for the derivativegff“) (z) of polynomialsg, (x), which seems to be of independent
interest.

COROLLARY 2.2. Letg, (z) be the classical polynomial, orthogonal with respect to a
classical weight functiomw (z) on (a, b). Then we have

inf ANp, o (21, zn_p) = A T, Tpp)=1,k=1,---,n—1
a<z1<---<zn,k,<b wk+1( ) bad 22 ) wk+1( ) I n ) ) ) b b
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for somexr; < --- <z, in (a,b) if and only if pointsz; < --- < a,_j are the roots of
¢ (z) in the interval(a, b).

In the next theorem we complete the solution of the most emiced interpolatory prob-
lem, which was originated by Egervéary and Tur@nl(0]; cf. also Karlin and Studder[l].
This problem was also solved in Theorems I, Il and Il in theeadlent paper of Jo62[0)],
in the case of Jacobi, Laguerre and Hermite weight functidnsour paper we present a
unified approach to solve the most economical interpolgtooplem in the class of all clas-
sical weights, which include the generalized Bessel, Jamolj0, +o0) and pseudo-Jacobi
weights.

THEOREM 2.3. Let ¢, (x) be the classical monic polynomial, orthogonal with respect

to a classical weight functiow («) on (a,b). Then the interpolatory systefp (), k =
1,---,n,isw;-stable and most economical if and only if

wherezy, - -+ ,z, € (a,b) are roots ofg, (z).
For the proof of Theorer.1we need the inequality

1 (2n)
— >0,a<x<b 0<n< gy,
(w1 (IE))

for any classical weight functiom (z). In view of Job R(], such results are due to R. Askey
in the case of Jacobi and Laguerre weight functions. Theiofgrpresented in2[0] use deep
theorems on the distribution of zeros of Jacobi and Lagusstgnomials f2]. Other proofs
were suggested by Balaz3 pnd BogmeérT] in the case of Jacobi and Laguerre polynomials.
We note that Balazs’s approach to the proofs was based oa saitable explicit integral
formulae for the function /w; («) which should be easy to differentiate. More precisely, by
applying three times the formula

+oo
/ t"reMat =T (V) ™" (u>0, v>0)
0

given in [14, Equation 3.381.4], we conclude that

1 1 oo
= / tre =Dz gy
wy (z)  T(a+1) o

for the Laguerre weight; (z) = 2**1e=* on (0, +oc), and

1 1 T B (b))
= t¥sPe UTS)TUTSIT At s
wy (x) F(a+1)F(5+1)/o /0

for the Jacobi weightv; (z) = (1 — 2)*™ (1 + )" on (=1, 1). Hence the derivatives

1 (2n) 1 400 ) (1-1)
= 1) t*e 7 Y%dt, 0 < o < 400,
(@) ~rarml) 0

and

1 \@ 1 400 pto0 ) 5 ey
VTR Y RN t— n ta - S —S zdl‘/d 1 1
(wl(w)) F(a+1)1“(6+1)/0 A (t=s5) s€ s, —l<z<l,
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are evidently positive. In the case of the Hermite weight
wy () = e’ (—oo <z < 400)
the proof is even simpler. Indeed, we have

< 1 >(2n) +o0 (2k>(2k71).....(2k72n+1)x2k72n

>0
wy (x) k!

k=2n

forall z € (—o0, +00).

Unfortunately, it seems that these ideas can not be apmli¢ldet remaining classical
weights given in i), (v) and {i) of Sectionl. On the other hand, we have found an ele-
mentary unified way to prove the required inequality for &bsical weights, which generate
nontrivial sequences of classical orthogonal polynomigts this purpose, we need the fol-
lowing three lemmas, which are of independent interest.

LEMMA 2.4. Letw (x) be a classical weight ofu, b) and lets,, (x) be defined by

(2.1) ( : )(")ﬂsn(@.

w1 (m) Wn1 ()

Thens,, (x) is a polynomial of degree of the form

n n k
(22) Sn (JJ) =cCn+ Z <(l€) Cn—k H [bl + (n - Z) a2]> z*
k=1

=1
with coefficients,, satisfying recurrent relations

co =1, c1 = by,
2.3)
cn=—(n—1)[b1+ (n—2)az]apch—2+ [bo+ (n — 1) a1] cpn_1,

whenevee < n < n,,. Moreover, the polynomial, (x) satisfies the recurrent formula

(24) sp(x)=—s, 1 () A@) +5sp-1 () [Bx)+ (n—1)A ()], n=1,2,---.

Proof. Lets, (x) be as in formulg2.1). Then the formulag2.1) and(2.4) with the
initial condition sy (z) = 1 are equivalent. Indeed, we can rewrtel) in the equivalent
form

(ﬁ) " Ly S @ (@) s @) @)

( wy; (x)
Since the Pearson differential equat{di) is equivalent to

wy, (r)  B(x)+(k—1)A ()

wi (z) A(z) 7
the proof of equivalence is completed.
Hence it remains to prove formulé2 2) and(2.3) by induction. Since we hawg (z) =
1 they are trivial forn = 0. Moreover(2.2), (2.3) and(2.4) yield

' bo +b
( 1£C)) = — 0+ 0% ands; (x):bo—i—blx.

wy ( wa ()
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Hence it is clear that formula@.2) and(2.3) hold also forn = 1. Now suppose that these
formulae are true fob, 1,--- ,n — 1 (n > 1). Then one can inse# (z) = ag + a1z + azz?
andB (z) = by + by into the right-hand side af2.4) and use the induction hypothesis to
get
—8p1 (2) A() + sn1 (2) [B () + (n — 1) A" ()]
={—(n—1)[b1 + (n —2)as] apcn_2 + [bo + (n — 1) ay] ch_1} 2°
+ncn_1 [b1 + (n— 1) ap] z*

TGN o

=1

+ <n01 1:[ [b1 + (n—1) ag]> okt

i=1

—+ <C() H [bl + (TL — Z) (12]) z"

=1
n k
n .
=c, + Z <<k:>cnk H [b1 4+ (n —1) a2]> z*
k=1 =1
= s, (2).
Thus the proofis completed. O

LEMMA 2.5. The derivative of the polynomia}, () from Lemma2.4 satisfies the fol-
lowing recurrent formula

/

s, (x) =n[by + (n—1)as] sp—1(x).

Proof. By the formula(2.2) we easily get

n—1 n—1 k
+n[b1+(n1)a2]z<< L )cnkl]:[[ler(nil)ag]):ck
k=1

=1
=nlb + (n—1)azg]sp-1 (),
which finishes the proof. 0O

LEMMA 2.6. The polynomialss,, (z), occurring in Lemma&.4, are convex and positive,
whenevet < n < n,.

Proof. First we restrict our attention to six classes of polyndsitefined in ()-(vi) of
Sectionl. Since we have, () = 1, it follows that the proof is obvious fat = 0. Suppose
that it is true forn > 1, i.e., that we have

Son—2 (z) >0 and s5,, 5 (x) >0
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onR. Then it follows from Lemma&.5that

Son () = 2n[by + (20 — 1) ag] 55, (x)
=2n[b1 + (2n — 1) az] (2n — 1) [by + (2n — 2) as] san—2 () .

Hence the inequality;,, (x) > 0 (a < = < b), will be established, whenever we show that
Oop = [bl + (27’L — 1) ag] [bl + (271 — 2) ag] >0

for all classical weights () given in ()-(vi). For this purpose we note that:
(a) Hermite case. Sineg; = 0 andb; = —2, we haved,,, = (—2) (—2) > 0.

(b) Jacobi case. Sinee = —1,b; = — (a+5+2) < 0,a > —1andf > —1, it follows
thatds, = (—a—fF—2n—1)(—a—f—2n) > 0.

(c) Laguerre case. Sinege = 0 andb; = —1, thends, = (—1)(—1) > 0.

(d) Generalized Bessel case. Singe= 1, b = a andn < [15%]| < 152, we have
62n - (Oé+2n—1)(04+2n—2) > 0.

(e) Jacobi on0,+o0) case. Sincei; = 1, by = 2 — o andn < |25 < 251, then
don = (—a+2n+1) (—a+2n) > 0.

(f) Pseudo-Jacobicase. Singe=1,b; =2 (1 — o) andn < [a — 3| < a— 3, it follows
thatds, = (—2a + 2n + 1) (—2a + 2n) > 0.

Hencess,, (x) is convex orR. Additionally, sa,, () is a polynomial of degre2n > 2. Thus
there exists a point € R such that

Son (2) = rznel]% Son ()

and
8 (2) = 0.
Therefore, it follows from Lemma.5that

_ 855, (2) _
= oot 2n—1ay O

Son—1 (Z)

Hence one can apply the recurrent form{#lal) and Lemm&2.5to obtain

Son (2) = = (2n — 1) [b1 + (2n — 2) as] san—2 (2) A(2)
+Son—1 (Z) [B (Z) + (2n - 1) A/ (Z)]
=—2n—1)[b1 + (2n —2) az] san—2 (2) A(2) > 0.

Note that the last inequality follows immediately from timeluctive hypotesiss,, 2 (x) >0
(x € R), the positivity of A (z) and from the fact thal; + (2n — 2) a2 is a negative factor
of ds,,; cf. the casesd)-(f) above. Since the pointis a global minimum ofs,, (x), the
proof is completed for all six classes of polynomials listedi)-(vi) of Sectionl. The other
cases follow directly from the fact that a linear change afaldez — dyz + dy (dy > 0)
preserves the positivity and convexity of the functign (z) = sap, (diz + dp), z € R. 0O
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3. Proofs of the main results. Let the function

(3.1) Aw, () = Ay (@321, y20) = z”:

k=1

be defined as in Sectidh i.e., let the Lagrange fundamental polynomials

B pn (2) ) = (2 — ) (1 —
(32) Zk (l‘) = 4(1. — Ik)p{n (l’k)7 pn( ) ( 1) ( n)a

of degreen — 1 be defined by the interpolating conditions
(33) lk (xi):(Ski, Zzla , 10
Moreover, let

(3.4) Ay, (1, yxp) = sup wy (2) Ay (X321, ,Tp) -
a<x<b

Below we will also need the formulae

(3.5) p (k) =

which can be obtained by an application of the I'Hospitalikerto the derivative of the for-
mula(3.2) for I, ().

Proof of Theoren2.1 Necessity.
If Ay, (z1,-+-,2,) = 1forsomez; < --- < x,in (a,b), then in view of(3.1), (3.4)
and(3.3) we have
ngl(x>>‘w1(x)§]—a a<x<b,
and
wy () Aw, () =1, i=1,--- ,n.
Hence it follows that

[wi (2) A, (2)]']

On the other hand, b§3.3) and(3.5) we have

=0,i=1,-,n.

T=T;

n [wi (@) (2)]

[wl (x) )\wl (x)]/|J,=£C1 - w1 (xk) e
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wherep,, (x) is as in(3.2). This in conjunction with the identity

wi(z) _ B)

wy (z) A(z)’

obtained from the Pearson differential equatjor?), yields
A (i) py () + B (i) ply () =0, i =1,-+ .

Since the polynomiall (z) p!! (z) + B (z) p), (x) has degree, the last identities show that
pn () = (x — 11) - - (z — z,,) is @ solution of the following differential equation

A(z)pir (z) + B (z)pl, (x) = Appn (), a <2 < by, Ay =n[(n—1)az + b1],

which is equivalent to the generic Sturm-Liouville diffate@l equation(1.1). Thus the poly-
nomial p,, () is the classical monic polynomial, orthogonal with respecthe classical
weightw ().

Sufficiency.
Letz; < --- < x, be the roots of the classical orthogonal polynomgia(x) in the
interval(a, b). Then it follows from the Sturm-Liouville differential egtion(1.1) that

wh (x3) @y, (v5) +wr (v5) qp, () =0, i=1,--- ,n.

Hence we conclude that

X, (o) = 30 ) ey

x
k=1

- ‘Z Ex; - (wf(:c))I

n

T=x;
This in conjunction with the obvious identities
(3.6) Moy (1) = — 1
. wy \Xi) = ——F—~, t=1L1,---,"Nn,
! w1 (l‘t)

implies that\,,, () is the Hermite interpolating polynomial for the functibfuw, (x) at knots
x < --- < x,. Hence the remainder formulé][for Hermite interpolation yields

g (2)

e (2n)!

ﬁ(x)—Awl (z) = ( ﬁ(x) )(%)

for some¢ € (a,b). Further, in view of Lemma&.4and2.6, we have

(2n)
1
(—) >0,a<z<b.
wy ()

Thus we conclude that
0 <wy () Ay, (x) < 1.
This inequality together with the identif$.6) shows that

inf Aw1 (Zla"' ;Zn) :Aw1 (x17"' ;mn) = 17
a<z1 < <zp<b
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which completes the proof. O
Proof of Theoren2.3. The fact that thé;, (z), K = 1,-- - , n, form thew, -stable system
is equivalent to the inequalities

o~

(3.7) 0 <w(x) uff((;cZ) < wn (m)zuif EZ) <l,a<z<b.
k—

~

Since the classical weights, (z) = A (z) w (x) satisfy the boundary conditions

li =i =0
lim wy (x) lim wy (x) =0,

it follows from the identitiesfk(xi) =0y, that pointse 1< - - - < zp_1<zp1<- - - <z, haveto
be zeros of polynomials, (x) of even multiplicity. Hence we hawéeg (lAk(:c)) >2(n—1)
and so

minzn:deg (ZAk (x)) >2n(n—1).
k=1

For the proof of sufficiency, we note that the last inequapws that the system

=N [( n (2)

2
lg (z) = —} yk=1,---,n,
x_‘rk)q;L (xk)

has the minimal sum

zn:deg (Z;C (:c)) =2n(n—1)
k=1

of degrees. Moreover, Theoreinl yields inequality(3.7). Hence this system i&, -stable

and most economical. On the other hand, if systgifx) is w;-stable and most economi-
cal, then the necessity part of the Theor2rafollows directly from the necessity party of
Theoren?.1 d

4. Numerical aspects of optimal interpolation. A numerical evaluation of the optimal,
stable and most economical interpolating operator reguarealgorithm to compute zeros
a <z <---<x, <bofthe monic classical orthogonal polynomials(z) in the interval
(a,b). For this purpose one can use the following recurrenceioel§?4, 33]

q () =1, q1 (x) =z — co,
qk+1 (l‘) = (x —Ck)(Jk (x) _quk—l (x)7 k= 1527" ,n— 17
with coefficientsc;, anddy, equal to

B 2kayri—1 — bo (2a2 — b1)

CL = Tok_2T2h akioalv"'anf]-a
2k—272
“-1) sk_1 (rp_1a1 — asby) — aopr
k—1\Tk—1Q1 — a200) — GQT3p_o
dk:krk—Q P} ak:1527"'5n_15
T2k—3T5, _oT2k—1
where

r, = vas + by ands, = va; + bg.
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It should be noticed that the formulae fay andd; given in(4.1) are also valid for Jacobi
weight functions withn + 5 = 0 anda + § = —1, whenever we assume thato = 1.

Since the cost of computation of the valge(z) at z is equal toO (n), it follows that
the zeros ofy, (x) can be computed by the well-known bisection algorithm fer $turm’s
sequenceslf3], which has the cosd (n2) Of course, this cost depends also on the precision
of computation of the zeros. Moreover, it can be reduced @) by applying the fast
algorithm from the paper)]. Itis interesting that these zeros give the solufion, - - - , x,,)
of the electrostatic equilibrium problem, which is welldwn for the Hermite, Jacobi and
Laguerre polynomials]1, 42], and has been proved recently for the remaining threeedass
(iv), (v) and i) of classical orthogonal polynomials i T].

Finally, after computing the zeros of, (x), one can easily adopt the barycentric algo-
rithm for the Lagrange interpolatiorb[ 16] in order to evaluate the Hermite or Lagrange
interpolating polynomials with knots equal to the zexgs- - - , z,, of ¢, (z). Alternatively,
one can use the fast algorithm due to Tygéf]|
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