We establish Hardy-type inequalities for the Riemann-Liouville and Weyl transforms associated with the Jacobi operator by using Hardy-type inequalities for a class of integral operators.

1. Introduction

It is well known that the Jacobi second-order differential operator is defined on \(]0, +\infty[\) by

\[
\Delta_{\alpha, \beta} u(x) = \frac{1}{A_{\alpha, \beta}(x)} \frac{d}{dx} \left(A_{\alpha, \beta}(x) \frac{du}{dx} \right) + \rho^2 u(x),
\]

(1.1)

where

(i) \(A_{\alpha, \beta}(x) = 2^{2\rho} \sinh^{2\alpha+1}(x) \cosh^{2\beta+1}(x) \),

(ii) \(\alpha, \beta \in \mathbb{R}; \alpha \geq \beta > -1/2 \),

(iii) \(\rho = \alpha + \beta + 1 \).

The Riemann-Liouville and Weyl transforms associated with Jacobi operator \(\Delta_{\alpha, \beta} \) are, respectively, defined, for every nonnegative measurable function \(f \), by

\[
R_{\alpha, \beta}(f)(x) = \int_0^x k_{\alpha, \beta}(x, y) f(y) \, dy,
\]

\[
W_{\alpha, \beta}(f)(y) = \int_y^{\infty} k_{\alpha, \beta}(x, y) f(x) A_{\alpha, \beta}(x) \, dx,
\]

(1.2)

where \(k_{\alpha, \beta} \) is the nonnegative kernel defined, for \(x > y > 0 \), by

\[
k_{\alpha, \beta}(x, y) = \frac{2^{-\alpha+3/2} \Gamma(\alpha + 1) \left(\cosh(2x) - \cosh(2y) \right)^{\alpha-1/2}}{\sqrt{\pi} \Gamma(\alpha + 1/2) \cosh^{\alpha+\beta}(x) \sinh^{2\alpha}(x)}
\]

\[
\times F \left(\alpha + \beta, \alpha - \beta; \alpha + \frac{1}{2}; \frac{\cosh(x) - \cosh(y)}{2 \cosh(x)} \right)
\]

(1.3)
and \(F \) is the Gaussian hypergeometric function. Such integral transforms have many applications to science and engineering [3, 4].

These operators have been studied on regular spaces of functions. In particular in [19], the author has proved that the Riemann-Liouville transform \(R_{\alpha,\beta} \) is an isomorphism from \(\xi_\alpha(\mathbb{R}) \) (the space of even infinitely differentiable functions on \(\mathbb{R} \)) on itself, and that the Weyl transform \(W_{\alpha,\beta} \) is an isomorphism from \(D_\ast(\mathbb{R}) \) (the space of even infinitely differentiable functions on \(\mathbb{R} \) with compact support) on itself. The Weyl transform has also been studied on Shwartz space \(S_\ast(\mathbb{R}) \) [20].

This paper is devoted to the study of the Riemann-Liouville and Weyl transforms on the spaces

\[
L^p([0,\infty[.A_{\alpha,\beta}(x)dx) \quad 1 < p < \infty
\]

of measurable functions on \([0,\infty[\) such that

\[
\|f\|_{p,\alpha,\beta} = \left(\int_0^\infty |f(x)|^p A_{\alpha,\beta}(x)dx\right)^{1/p} < \infty.
\]

The main results of this work are Theorems 4.2 and 4.4 in Section 4.

To obtain those results we use the following integral operators:

\[
T_\phi(f)(x) = \int_0^x \phi\left(\frac{t}{x}\right) f(t)\nu(t)dt,
\]

\[
T_\phi^\ast(g)(x) = \int_x^\infty \phi\left(\frac{x}{t}\right) g(t)d\mu(t),
\]

where

(i) \(\nu \) is a nonnegative locally integrable function on \([0,\infty[\),

(ii) \(d\mu(t) \) is a nonnegative measure, locally finite on \([0,\infty[\),

(iii) the following is a measurable function satisfying some properties [10, 12, 18]:

\[
\phi: \mathbb{R} \to [0,\infty[.
\]

Both operators \(T_\phi \) and \(T_\phi^\ast \) are connected by the following duality relation: for all nonnegative measurable functions \(f \) and \(g \) we have

\[
\int_0^\infty T_\phi(f)(x)g(x)d\mu(x) = \int_0^\infty f(y)T_\phi^\ast(g)(y)\nu(y)dy.
\]

In this paper, we give some conditions on the functions \(\phi, \nu \) and the measure \(d\mu \) so that the operator \(T_\phi \) and its dual \(T_\phi^\ast \) satisfy the following Hardy inequalities: for all real numbers \(p, q \) satisfying

\[
1 < p \leq q < \infty,
\]
there exists a positive constant \(C_{p,q} \) such that for all nonnegative measurable functions \(f \) and \(g \) we have

\[
\left(\int_0^\infty (T_\varphi(f)(x))^q d\mu(x) \right)^{1/q} \leq C_{p,q} \left(\int_0^\infty (f(x))^p \nu(x) dx \right)^{1/p},
\]

\[
\left(\int_0^\infty (T_\varphi^*(g)(x))^p \nu(x) dx \right)^{1/p'} \leq C_{p,q} \left(\int_0^\infty (g(x))^q d\mu(x) \right)^{1/q'},
\]

where \(p' \) and \(q' \) are the conjugate exponents, respectively, of \(p \) and \(q \).

In [5], we have studied inequalities (1.10), in the case \(1 < q < p < \infty \). The inequalities obtained below for the operators \(T_\varphi \) and \(T_\varphi^* \) will allow us to obtain the main results of this paper.

This paper is arranged as follows.

In Section 2, we consider a continuous nonincreasing function

\[\varphi :]0,1[\rightarrow]0,\infty[\]

for which there exists a positive constant \(D \) satisfying

\[\forall x, y \in]0,1[, \quad \varphi(xy) \leq D(\varphi(x) + \varphi(y)). \]

Then we give necessary and sufficient conditions such that the operators \(T_\varphi \) and \(T_\varphi^* \) satisfy the inequalities (1.10).

In Section 3, we suppose only that the function \(\varphi \) is nondecreasing and we give the sufficient conditions such that the precedent inequalities hold.

In Section 4, we use the results obtained below to study and to establish the Hardy inequalities for Riemann and Weyl operators associated with Jacobi differential operator \(\Delta_{\alpha,\beta} \).

2. Hardy operator \(T_\varphi \) and its dual \(T_\varphi^* \) when the function \(\varphi \) is nonincreasing on \(]0,1[\)

In this section, we consider a measurable positive and nonincreasing function \(\varphi \) defined on \(]0,1[\) for which we associate the operator \(T_\varphi \) and its dual \(T_\varphi^* \) defined, respectively, for every nonnegative and measurable function \(f \), by

\[\forall x > 0, \quad T_\varphi(f)(x) = \int_0^x \varphi \left(\frac{t}{x} \right) f(t) \nu(t) dt, \]

\[\forall x > 0, \quad T_\varphi^*(f)(x) = \int_x^\infty \varphi \left(\frac{x}{t} \right) f(t) d\mu(t), \]

where \(\nu \) is a measurable nonnegative function on \(]0,\infty[\) such that

\[\forall a > 0, \quad \int_0^a \nu(t) dt < \infty \]

and \(d\mu(t) \) is a nonnegative measure on \(]0,\infty[\) satisfying

\[\forall 0 < a < b, \quad \int_a^b d\mu(t) < \infty. \]
The main result of this section is Theorem 2.1.

Theorem 2.1. Let p and q be two real numbers such that

\[1 < p \leq q < +\infty. \tag{2.4} \]

Let ν be a nonnegative measurable function on $]0, +\infty[$ satisfying (2.2), and $d\mu(t)$ a nonnegative measure on $]0, +\infty[$ which satisfies the relation (2.3). Lastly, suppose that

\[\varphi :]0, 1[\rightarrow]0, +\infty[\tag{2.5} \]

is a continuous nonincreasing function so that

(i) there exists a positive constant D such that

\[\forall x, y \in]0, 1[, \quad \varphi(xy) \leq D(\varphi(x) + \varphi(y)), \tag{2.6} \]

(ii) for all $a > 0$,

\[\int_0^a \varphi \left(\frac{t}{a} \right) \nu(t) \, dt < +\infty. \tag{2.7} \]

Then the following assertions are equivalent.

(1) There exists a positive constant $C_{p,q}$ such that for every nonnegative measurable function f,

\[\left(\int_0^\infty (T_\varphi(f)(t))^q d\mu(t) \right)^{1/q} \leq C_{p,q} \left(\int_0^\infty (f(t))^p \nu(t) \, dt \right)^{1/p}. \tag{2.8} \]

(2) The functions

\[r \mapsto \left(\int_r^\infty d\mu(t) \right)^{1/q} \left(\int_0^r \varphi \left(\frac{t}{r} \right)^{p'} \nu(t) \, dt \right)^{1/p'}, \tag{2.9} \]

\[r \mapsto \left(\int_r^\infty \varphi \left(\frac{r}{t} \right)^q d\mu(t) \right)^{1/q} \left(\int_r^\infty \nu(t) \, dt \right)^{1/p'} \]

are bounded on $]0, +\infty[$, where

\[p' = \frac{p}{p - 1}. \tag{2.10} \]

The proof of this theorem uses the idea of [10, 13, 14, 18] and is left to the reader.

To obtain similar inequalities for the dual operator T_φ^*, we use the following duality lemma.

Lemma 2.2 [12, 18]. Let p, q, p', q' be real numbers such that

\[1 < p \leq q < +\infty, \quad \frac{1}{p} + \frac{1}{p'} = 1, \quad \frac{1}{q} + \frac{1}{q'} = 1 \tag{2.11} \]
let \(\mu \) be a \(\sigma \)-finite measure on \([0, +\infty[\) and \(\nu \) a nonnegative locally integrable function on \([0, +\infty[\). Then the following statements are equivalent.

(1) There exists a positive constant \(C_{p,q} \) such that for every nonnegative measurable function \(f \)

\[
\left(\int_0^\infty (T\varphi(f)(t))^q d\mu(t) \right)^{1/q} \leq C_{p,q} \left(\int_0^\infty (f(t))^p \nu(t) dt \right)^{1/p}
\]

(2.12)

(2) There exists a positive constant \(C_{p,q} \) such that for every nonnegative measurable function \(g \)

\[
\left(\int_0^\infty (T^*\varphi(g)(t))^p' \nu(t) dt \right)^{1/p'} \leq C_{p,q} \left(\int_0^\infty (g(t))^q' d\mu(t) \right)^{1/q'}
\]

(2.13)

A consequence of Theorem 2.1 and Lemma 2.2 is the following.

Theorem 2.3 (dual theorem). Under the hypothesis of Theorem 2.1, the following assumptions are equivalent.

(1) There exists a positive constant \(C_{p,q} \) such that for every nonnegative measurable function \(g \)

\[
\left(\int_0^\infty (T^*\varphi(g)(x))^q \nu(x) dx \right)^{1/q} \leq C_{p,q} \left(\int_0^\infty (g(x))^p d\mu(x) \right)^{1/p}
\]

(2.14)

(2) Both functions

\[
\begin{align*}
r &\mapsto \left(\int_r^\infty d\mu(x) \right)^{1/p'} \left(\int_0^r \varphi \left(\frac{t}{r} \right)^q \nu(t) dt \right)^{1/q}, \\
& \quad \left(\int_0^r \varphi \left(\frac{t}{x} \right)^{p'} d\mu(x) \right)^{1/p'} \left(\int_0^r \nu(t) dt \right)^{1/q}
\end{align*}
\]

(2.15)

are bounded on \([0, +\infty[\).

3. Integral operator \(T\varphi \) and its dual when the function \(\varphi \) is nondecreasing

In this section, we suppose only that the function

\(\varphi :]0, 1[\to]0, +\infty[\)

is nondecreasing, we will give a sufficient condition, which permits to prove that the integral operators \(T\varphi \) and \(T^*\varphi \) satisfy the Hardy inequalities \([1, 8, 15, 16]\).

Theorem 3.1. Let \(p \) and \(q \) be two real numbers such that

\[
1 < p \leq q < \infty
\]

(3.2)

and \(p' = p/(p-1) \), \(q' = q/(q-1) \). Let \(\nu \) be a nonnegative function on \([0, +\infty[\) satisfying (2.2), and \(d\mu(t) \) a nonnegative measure on \([0, +\infty[\) which satisfies the relation (2.3). Finally,
let
\[\varphi :]0,1[\to]0,+\infty[\] (3.3)
be a measurable nondecreasing function.

If there exists \(\beta \in [0,1] \) such that the function
\[r \mapsto \left(\int_r^\infty \varphi \left(\frac{r}{x} \right) \beta q \, d\mu(x) \right)^{1/q} \left(\int_0^r \varphi \left(\frac{x}{r} \right) ^{p(1-\beta)} \nu(x) dx \right)^{1/p'} \] (3.4)
is bounded on \(]0,+\infty[\), then there exists a positive constant \(C_{p,q} \) such that for every nonnegative measurable function \(f \),
\[\left(\int_0^\infty (T_\varphi(f)(x))^q d\mu(x) \right)^{1/q} \leq C_{p,q} \left(\int_0^\infty (f(x))^p \nu(x) dx \right)^{1/p}. \] (3.5)

Proof of Theorem 3.1. Let \(h \) be the function defined by
\[h(y) = \left(\int_0^y \varphi \left(\frac{y}{z} \right) ^{(1-\beta)p'} \nu(z) dz \right)^{1/(p'+q)}. \] (3.6)

By Hölder’s inequality, we have
\[T_\varphi(f)(x) = \int_0^x \varphi \left(\frac{y}{h(y)} \right)^{p-1} h(y) f(y) \nu(y) dy \leq \left(\int_0^x \varphi \left(\frac{y}{h(y)} \right)^p h(y) f(y) \nu(y) dy \right)^{1/p} \times \left(\int_0^x \varphi \left(\frac{y}{h(y)} \right)^{p'} h(y) \nu(y) dy \right)^{1/p'}. \] (3.7)

Let
\[J(x) = \int_0^x \varphi \left(\frac{y}{h(y)} \right)^{p'} h(y)^{-p'} \nu(y) dy. \] (3.8)

If we replace \(h(y) \) by its value, then we obtain
\[J(x) = \int_0^x \varphi \left(\frac{y}{h(y)} \right)^{p'(1-\beta)} \left(\int_0^y \varphi \left(\frac{z}{y} \right) ^{(1-\beta)p'} \nu(z) dz \right)^{1-p'/(p'+q)} \nu(y) dy. \] (3.9)

Since the function \(\varphi \) is nondecreasing and \(\beta \in [0,1] \), we have
\[\forall 0 < y < x, \quad \left(\int_0^y \varphi \left(\frac{z}{y} \right) ^{(1-\beta)p'} \nu(z) dz \right)^{1-p'/(p'+q)} \leq \left(\int_0^y \varphi \left(\frac{z}{x} \right) ^{(1-\beta)p'} \nu(z) dz \right)^{1-p'/(p'+q)}. \] (3.10)

Therefore
\[J(x) \leq \int_0^x \varphi \left(\frac{y}{h(y)} \right)^{p'(1-\beta)} \left(\int_0^y \varphi \left(\frac{z}{x} \right) ^{(1-\beta)p'} \nu(z) dz \right)^{1-p'/(p'+q)} \nu(y) dy \] (3.11)
and if we put
\[g_x(z) = \varphi\left(\frac{z}{x}\right)^{(1-\beta)p'} 1_{[0,x]}(z) \]
(3.12)
from the hypothesis, the function
\[z \rightarrow g_x(z) \nu(z) \]
(3.13)
belongs to \(L^1(]0,\infty[, dz) \) and
\[J(x) \leq \int_0^x \left(\int_0^y g_x(z) \nu(z) dz \right)^{-p/(p'+q)} g_x(y) \nu(y) dy. \]
(3.14)
Since
\[1 - \frac{p'}{p' + q} = \frac{q}{p' + q} > 0, \]
(3.15)
then, from [16, Lemma 1], we deduce that
\[\int_0^x \left(\int_0^y g_x(z) \nu(z) dz \right)^{-p/(p'+q)} g_x(y) \nu(y) dy = \left(\frac{p' + q}{q} \right) \left(\int_0^x g_x(z) \nu(z) dz \right)^{q/(p'+q)}; \]
(3.16)
therefore inequality (3.14) involves
\[J(x) \leq \left(\frac{p' + q}{q} \right) h(x)^{\frac{q}{p'}}. \]
(3.17)
From inequalities (3.7) and (3.17), we obtain
\[(T_{\varphi}(f)(x))^q \leq \left(\int_0^x \left(\varphi\left(\frac{y}{x}\right)^\beta h(y) f(y) \right)^p \nu(y) dy \right)^{q/p} J(x)^{q/p'}, \]
\[\leq \left(\frac{p' + q}{q} \right)^{q/p'} \left(\int_0^x \varphi\left(\frac{y}{x}\right)^\beta h(y) f(y) \right)^p \nu(y) dy \right)^{q/p} h(x)^{q/p'}. \]
(3.18)
so, we obtain
\[I = \left(\int_0^\infty (T_{\varphi}(f)(x))^q d\mu(x) \right)^{1/q} \leq \left(\frac{p' + q}{q} \right)^{1/p'} \left(\int_0^\infty \left[\int_0^x \varphi\left(\frac{y}{x}\right)^\beta h(y) f(y) h(x)^{q/p'} \nu(y) dy \right]^{q/p} d\mu(x) \right)^{1/q}. \]
(3.19)
Since \(q/p \geq 1 \), then, from Minkowski’s inequality [17], we deduce that
\[I \leq \left(\frac{p' + q}{q} \right)^{1/p'} \left(\int_0^\infty \left(\int_0^\infty \varphi\left(\frac{y}{x}\right)^\beta h(y) f(y) h(x)^{q/p'} d\mu(x) \right)^{p/q} \nu(y) dy \right)^{1/p}. \]
(3.20)
Hardy-type inequalities

So

\[I \leq \left(\frac{p' + q}{q} \right)^{1/p'} \times \left(\int_0^\infty \left(\int_y^{\infty} \left(\frac{y}{x} \right)^\beta h(x)^{q/p'} \right)^q d\mu(x) \right)^{p/q} \left(h(y) f(y) \right)^p v(y) dy \right)^{1/p} \] \hspace{1cm} (3.21)

On the other hand, from the hypothesis, the function

\[r \rightarrow \left(\int_r^{\infty} \left(\frac{r}{x} \right)^{\beta q} d\mu(x) \right)^{1/q} \left(\int_0^r \left(\frac{x}{r} \right)^{p'(1-\beta)} \nu(x) dx \right)^{1/p'} \] \hspace{1cm} (3.22)

is bounded on \([0, +\infty[\), we denote

\[M_{p,q} = \sup_{r>0} \left(\int_r^{\infty} \left(\frac{r}{x} \right)^{\beta q} d\mu(x) \right)^{1/q} \left(\int_0^r \left(\frac{x}{r} \right)^{p'(1-\beta)} \nu(x) dx \right)^{1/p'} , \] \hspace{1cm} (3.23)

then

\[\left(\int_0^x \varphi \left(\frac{z}{x} \right)^{(1-\beta)p'} \nu(z) dz \right)^{1/(p'+q)} \leq M_{p,q}^{p'/(p'+q)} \left(\int_x^\infty \varphi \left(\frac{x}{z} \right)^{\beta q} d\mu(z) \right)^{-p'/(q(p'+q))} \] \hspace{1cm} (3.24)

which means that

\[h(x) \leq M_{p,q}^{p'/(p'+q)} \left(\int_x^\infty \varphi \left(\frac{x}{z} \right)^{\beta q} d\mu(z) \right)^{-p'/(q(p'+q))} \] \hspace{1cm} (3.25)

From inequalities (3.21) and (3.25) we obtain

\[I \leq \left(\frac{p' + q}{q} \right)^{1/p'} M_{p,q}^{q/(p'+q)} \times \left[\int_0^\infty \left(f(y) h(y) \right)^p \left(\int_y^{\infty} \varphi \left(\frac{y}{x} \right)^{\beta q} \right) \left(\int_x^\infty \varphi \left(\frac{x}{z} \right)^{\beta q} d\mu(z) \right)^{-q/(p'+q)} d\mu(x) \right]^{p/q} v(y) dy \] \hspace{1cm} (3.26)

Since \(\varphi \) is nondecreasing, we have

\[I \leq \left(\frac{p' + q}{q} \right)^{1/p'} M_{p,q}^{q/(p'+q)} \times \left[\int_0^\infty \left(f(y) h(y) \right)^p \left(\int_y^{\infty} \varphi \left(\frac{y}{x} \right)^{\beta q} \right) \left(\int_x^\infty \varphi \left(\frac{x}{z} \right)^{\beta q} d\mu(z) \right)^{-q/(p'+q)} d\mu(x) \right]^{p/q} v(y) dy \] \hspace{1cm} (3.27)
From [16, Lemma 1], we have again
\[
\int_{\gamma} \varphi\left(\frac{y}{x}\right) \beta q \left(\int_{x}^{\gamma} \varphi\left(\frac{y}{z}\right) d\mu(z)\right)^{-q/(p'+q)} d\mu(x) = \frac{p'+q}{p'} \left(\int_{\gamma} \varphi\left(\frac{y}{z}\right) d\mu(z)\right)^{p'/(p'+q)},
\]
so, we get
\[
I \leq \left(\frac{p'+q}{q}\right)^{1/p'} \left(\frac{p'+q}{p'}\right)^{1/q} M_{p,q}^{q/(p'+q)} \times \left[\int_{0}^{\gamma} (f(y)h(y))^{p} \left(\int_{y}^{\gamma} \varphi\left(\frac{y}{z}\right) d\mu(z)\right)^{p^{(1-\beta)} q} \nu(y) dy\right]^{1/p}.
\]
(3.29)

On the other hand, from the relation (3.23), we deduce that
\[
\int_{\gamma} \varphi\left(\frac{y}{z}\right) d\mu(z) \leq M_{p,q}^{q}\left(\int_{0}^{\gamma} \varphi\left(\frac{z}{y}\right) d\mu(z)\right)^{p^{(1-\beta)} q} \nu(y) dy;
\]
consequently
\[
\left(\int_{\gamma} \varphi\left(\frac{y}{z}\right) d\mu(z)\right)^{p^{(1-\beta)} q} \leq M_{p,q}^{q}\left(\int_{0}^{\gamma} \varphi\left(\frac{z}{y}\right) d\mu(z)\right)^{p^{(1-\beta)} q} \nu(y) dy.
\]
(3.30)

From inequalities (3.29) and (3.31), we deduce that for every nonnegative measurable function \(f\), we have
\[
\left(\int_{0}^{\gamma} \varphi\left(\frac{f}{x}\right) d\mu(x)\right)^{1/q} \leq C_{p,q} \left(\int_{0}^{\gamma} (f(y))^{p} \nu(y) dy\right)^{1/p},
\]
where
\[
C_{p,q} = \left(\frac{p'+q}{q}\right)^{1/p'} \left(\frac{p'+q}{p'}\right)^{1/q} M_{p,q}
\]
(3.33)
and \(M_{p,q}\) is the constant given by (3.23).

This completes the proof of Theorem 3.1.

From Lemma 2.2 and Theorem 3.1 we obtain the following result.

Theorem 3.2 (dual theorem). Under the hypothesis of Theorem 3.1 if there exists \(\beta \in [0,1]\) such that the function
\[
r \mapsto \left(\int_{r}^{\gamma} \varphi\left(\frac{r}{x}\right) d\mu(x)\right)^{1/p'} \left(\int_{0}^{r} \varphi\left(\frac{x}{r}\right)^{q(1-\beta)} \nu(x) dx\right)^{1/q}
\]
is bounded on \([0,\infty[\), then there exists a positive constant \(C_{p,q}\) such that for every nonnegative measurable function \(g\)
\[
\left(\int_{0}^{\gamma} \varphi\left(\frac{g}{x}\right) d\mu(x)\right)^{1/q} \leq C_{p,q} \left(\int_{0}^{\gamma} (g(x))^{p} d\mu(x)\right)^{1/p}.
\]
(3.35)
Hardy-type inequalities

4. Riemann-Liouville and Weyl transforms associated with Jacobi operator

The Jacobi operator stated in the introduction has been studied by many authors \cite{2, 6, 7, 19, 20}. In particular, we know that, for every complex number \(\lambda \), the differential equation

\[
\Delta_{\alpha, \beta} u(x) = -\lambda^2 u(x),
\]

\[
u(0) = 1, \quad u'(0) = 0
\] \tag{4.1}

admits a unique solution \(\varphi_{\lambda}^{a,b}(x) \) given by

\[
\varphi_{\lambda}^{a,b}(x) = F\left(\frac{1}{2}(\rho + i\lambda), \frac{1}{2}(\rho - i\lambda); \alpha + 1; -\sinh^2(x)\right), \quad \tag{4.2}
\]

where \(F \) is the Gaussian hypergeometric function \cite{9, 11}. Furthermore the function \(\varphi_{\lambda}^{a,b} \) has the following Mehler integral representation:

\[
\forall x > 0, \quad \varphi_{\lambda}^{a,b}(x) = \int_0^x k_{a,b}(x, y) \cos(\lambda y) \, dy, \quad \tag{4.3}
\]

where \(k_{a,b} \) is the nonnegative kernel given by the relation (1.3).

Many properties of harmonic analysis associated with the operator \(\Delta_{a,b} \) have been studied and established (convolution product, Fourier-transform, inversion formula, Plancherel and Paley-Wiener theorems).

On the other hand, the following integral transforms are defined for the Jacobi operator.

\textit{Definition 4.1.} (1) The Riemann-Liouville transform associated with Jacobi operator is defined, for every nonnegative measurable function \(f \), by

\[
R_{\alpha, \beta}(f)(x) = \int_0^x k_{a,b}(x, y) f(y) \, dy.
\] \tag{4.4}

(2) The Weyl transform associated with Jacobi operator is defined, for every nonnegative measurable function \(f \), by

\[
W_{\alpha, \beta}(f)(x) = \int_x^\infty k_{a,b}(y, x) f(y) A_{\alpha, \beta}(y) \, dy,
\] \tag{4.5}

where \(k_{a,b} \) is the kernel given by the relation (1.3).

Those integral operators are linked by the following duality relation: for all nonnegative measurable functions \(f \) and \(g \),

\[
\int_0^\infty R_{\alpha, \beta}(f)(x) g(x) \, dx A_{\alpha, \beta}(x) \, dx = \int_0^\infty W_{\alpha, \beta}(g)(x) f(x) \, dx. \quad \tag{4.6}
\]

As mentioned in the introduction, those integral transforms have been studied on spaces of regular functions.

Our purpose in this section is to study those operators on the spaces \(L^p([0, \infty], A_{\alpha, \beta}(x) \, dx) \), \(1 < p < \infty \).
Theorem 4.2. For \(-1/2 < \beta \leq \alpha, \alpha \geq 1/2,\) and \(p > 2\alpha + 2,\) there exists a positive constant \(C_{p,\alpha,\beta}\) such that

1. for all \(f \in L^p([0, \infty[^p,A_{\alpha,\beta}(x)dx),\)

\[
\|R_{\alpha,\beta}(f)\|_{p,\alpha,\beta} \leq C_{p,\alpha,\beta}\|f\|_{p,\alpha,\beta},
\]

\((4.7)\)

2. for all \(g \in L^{p'}([0, \infty[^p,A_{\alpha,\beta}(x)dx),\)

\[
\left\| \frac{1}{A_{\alpha,\beta}(x)} W_{\alpha,\beta}(g) \right\|_{p',\alpha,\beta} \leq C_{p,\alpha,\beta}\|g\|_{p',\alpha,\beta},
\]

\((4.8)\)

where

\[p' = \frac{p}{p-1}.\]

\((4.9)\)

The proof of this theorem needs the following lemma.

Lemma 4.3. For \(\alpha \geq 1/2\) and \(-1/2 < \beta \leq \alpha,\) there exists a positive constant \(a_{\alpha,\beta}\) such that

\[
\forall x > y > 0, \quad 0 \leq k_{\alpha,\beta}(x, y) \leq a_{\alpha,\beta}(x - y)^{\alpha-1/2} \frac{1}{\sqrt{A_{\alpha,\beta}(x)}}.
\]

\((4.10)\)

Proof of Lemma 4.3. (i) It is clear that \(k_{\alpha,\beta}(x, y) \geq 0.\)

(ii) From mean value’s theorem we deduce that

\[
(\cosh(2x) - \cosh(2y))^{\alpha-1/2} \leq 2^{\alpha-1/2}(x - y)^{\alpha-1/2}\sinh^{\alpha-1/2}(2x).
\]

\((4.11)\)

Therefore from the relation (1.3) and the facts that \(\beta \leq \alpha\) and

\[
\sinh(2x) = 2 \sinh(x) \cosh(x),
\]

\((4.12)\)

we have

\[
k_{\alpha,\beta}(x, y) \leq 2^{\alpha+1/2} M_{\alpha,\beta} \Gamma(\alpha + 1) \sinh^{-\alpha-1/2}(x) \cosh^{-\beta-1/2}(x) \frac{(x - y)^{\alpha-1/2}}{\Gamma(\alpha + 1/2)\sqrt{\pi}},
\]

\((4.13)\)

where

\[
M_{\alpha,\beta} = \max_{0 \leq t \leq 1/2} \left| F\left(\alpha + \beta, \alpha - \beta; \alpha + \frac{1}{2}; t\right) \right|;
\]

\((4.14)\)

hence

\[
0 \leq k_{\alpha,\beta}(x, y) \leq 2^{2\alpha+\beta+3/2} M_{\alpha,\beta} \Gamma(\alpha + 1) \frac{(x - y)^{\alpha-1/2}}{\sqrt{A_{\alpha,\beta}(x)\Gamma(\alpha + 1/2)\sqrt{\pi}}},
\]

\((4.15)\)

We obtain the result by setting

\[
a_{\alpha,\beta} = \frac{2^{2\alpha+\beta+3/2} M_{\alpha,\beta} \Gamma(\alpha + 1)}{\Gamma(\alpha + 1/2)\sqrt{\pi}}.
\]

\((4.16)\)
Proof of Theorem 4.2. Let T_φ and T_φ^* be the Hardy-type operators defined, respectively, by

$$T_\varphi(f)(x) = \int_0^x \varphi\left(\frac{t}{x}\right) f(t) \nu(t) dt,$$

$$T_\varphi^*(f)(x) = \int_x^\infty \varphi\left(\frac{x}{t}\right) f(t) d\mu(t),$$

where

$$\varphi(t) = (1 - t)^{\alpha - 1/2},$$

$$\nu(t) = A_{\alpha,\beta}^{1-p'}(t),$$

$$d\mu(t) = t^{p(a-1/2)} A_{\alpha,\beta}^{1-p/2}(t) dt.$$

(i) Since $\alpha \geq 1/2$, the function φ is continuous and nonincreasing on $]0,1[$. Furthermore for all $a, b \in]0,1[$ we have

$$1 - ab \leq (1 - a) + (1 - b),$$

then by using the inequality

$$(u + v)^p \leq \max(1, 2^{p-1})(u^p + v^p), \quad u, v \geq 0,$$

we deduce that

$$(1 - ab)^{\alpha - 1/2} \leq D((1 - a)^{\alpha - 1/2} + (1 - b)^{\alpha - 1/2}),$$

where $D = \max(1, 2^{\alpha - 3/2})$. That is,

$$\varphi(ab) \leq D(\varphi(a) + \varphi(b)).$$

(ii) The function ν is locally integrable on $[0, +\infty[$. In fact we have

$$\nu(t) = A_{\alpha,\beta}^{1-p'}(t) \approx 2^{2p(1-p')}(2\alpha+1)(1-p') \quad (t \to 0).$$

Since $p > 2\alpha + 2$, then for all $a > 0$,

$$\int_0^a \nu(t) dt < \infty,$$

$$\int_0^a \varphi\left(\frac{t}{a}\right) \nu(t) dt \leq \int_0^a \nu(t) dt < \infty.$$

(iii) It is clear that the function

$$t \to t^{p(a-1/2)} A_{\alpha,\beta}^{1-p/2}(t)$$

is continuous on $]0, \infty[$. Consequently the measure $d\mu(t)$ is locally finite on $]0, \infty[$.
Now we will prove that the operator T_{ϕ} defined latterly satisfies the sufficient condition of Theorem 2.1. Then we must show that the functions

$$F(r) = \left(\int_r^\infty d\mu(t) \right)^{1/p} \left(\frac{r}{t} \right) \phi(t) \left(\int_0^r \nu(t) dt \right) \left(\int_0^r \nu(t) dt \right)^{1/p'},$$

$$G(r) = \left(\int_r^\infty \phi(t) \right)^{1/p} \left(\frac{r}{t} \right) \left(\int_0^r \nu(t) dt \right)^{1/p},$$

are bounded on $]0, \infty[$. We put

$$I(r) = \left(\int_r^\infty d\mu(t) \right)^{1/p} = \left(\int_r^\infty t^{p(\alpha-1/2)} A_{\alpha,\beta}^{1-p/2}(t) dt \right)^{1/p},$$

$$J(r) = \left(\int_0^r \nu(t) dt \right)^{1/p}.$$

Since

$$\forall t \in]0,1[, \quad \phi(t) \leq 1,$$

then

$$\forall r > 0, \quad F(r) \leq I(r) J(r),$$

$$\forall r > 0, \quad G(r) \leq I(r) J(r).$$

Now, we have

$$t^{p(\alpha-1/2)} A_{\alpha,\beta}^{1-p/2}(t) = 2^{(2p-1)} t^{2\alpha+1-p} \cosh^{(2\beta+1)(1-p/2)}(t)$$

and since $p > 2\alpha + 2 > 2$, we deduce that

$$\forall t > 0, \quad t^{p(\alpha-1/2)} A_{\alpha,\beta}^{1-p/2}(t) \leq t^{2\alpha+1-p}$$

and consequently

$$\forall r > 0, \quad I(r) \leq \left(\frac{1}{p - 2\alpha - 2} \right)^{1/p} t^{(2\alpha+2-p)/p}. (4.32)$$

Furthermore, we have

$$J(r) = \left(\int_0^r \nu(t) dt \right)^{1/p'} = \left(\int_0^r A_{\alpha,\beta}^{1-p'}(t) dt \right)^{1/p'}.$$

Since

$$A_{\alpha,\beta}^{1-p'}(t) = 2^{2p(1-p')} t^{(2\alpha+1)(1-p')} \left(\frac{t}{\sinh(t)} \right)^{(2\alpha+1)(1-p')} \cosh^{(2\beta+1)(1-p')}(t),$$
then
\[A_{a,\beta}^{1-p'}(t) \leq t^{(2\alpha+1)(1-p')}. \] (4.35)

Thus, we deduce that
\[\forall r > 0, \quad J(r) \leq \left(\frac{1}{(2\alpha+1)(p'-1)+1} \right)^{1/p'} r^{((2\alpha+1)(1-p')+1)/p'}. \] (4.36)

From the relations (4.32) and (4.36), we obtain
\[\forall r > 0, \quad \left(\int_r^\infty d\mu(t) \right)^{1/p} \left(\int_0^r \nu(t)dt \right)^{1/p'} = I(r)J(r) \leq \left(\frac{1}{p-2\alpha-2} \right)^{1/p'} \left(\frac{1}{(2\alpha+1)(p'-1)+1} \right)^{1/p'} \] (4.37)

and from the relations (4.29), it follows that both functions F and G are bounded on $]0, \infty[$. Therefore from Theorem 2.1, there exists a positive constant $D_{p,a,\beta}$ such that for every nonnegative measurable function g, we have
\[\left(\int_0^\infty (T_{\varphi}(g)(x))^p d\mu(x) \right)^{1/p} \leq D_{p,a,\beta} \left(\int_0^\infty (g(x))^p \nu(x)dx \right)^{1/p}. \] (4.38)

Let $T_{a,\beta}$ be the operator defined, for every nonnegative measurable function f, by
\[\forall x > 0, \quad T_{a,\beta}(f)(x) = \frac{1}{\sqrt{A_{a,\beta}(x)}} \int_0^x (x-y)^{\alpha-1/2} f(y)dy. \] (4.39)

Then the operators $T_{a,\beta}$ and T_{φ} are connected by the following relation: for every nonnegative measurable function f, we have
\[\forall x > 0, \quad T_{\varphi}(g)(x) = x^{1/2-\alpha} \sqrt{A_{a,\beta}(x)} T_{a,\beta}(f)(x), \] (4.40)

where
\[g(x) = f(x)(A_{a,\beta}(x))^{p'-1}. \] (4.41)

So the relation (4.38) implies that
\[\left(\int_0^\infty (T_{a,\beta}(f)(x))^p A_{a,\beta}(x)dx \right)^{1/p} \leq D_{p,a,\beta} \left(\int_0^\infty (f(x))^p A_{a,\beta}(x)dx \right)^{1/p}. \] (4.42)

and from Lemma 4.3 we deduce that there exists a positive constant $C_{p,a,\beta}$ such that for every nonnegative measurable function f, we have
\[\left(\int_0^\infty (R_{a,\beta}(f)(x))^p A_{a,\beta}(x)dx \right)^{1/p} \leq C_{p,a,\beta} \left(\int_0^\infty (f(x))^p A_{a,\beta}(x)dt \right)^{1/p}. \] (4.43)
Now we consider $f \in L^p([0, \infty], A_{a,\beta}(x) dx)$; then from the relation (4.43) we have

$$
\left(\int_0^\infty (R_{a,\beta}(|f|)(x))^p A_{a,\beta}(x) dx \right)^{1/p} \leq C_{p,a,\beta} \left(\int_0^\infty (|f(x)|)^p A_{a,\beta}(x) dx \right)^{1/p} < \infty. $$

(4.44)

Hence the function

$$
x \mapsto R_{a,\beta}(|f|)(x)
$$

is finite almost everywhere. Then the function

$$
x \mapsto R_{a,\beta}(f)(x)
$$

is defined almost everywhere, and

$$
|R_{a,\beta}(f)(x)| \leq R_{a,\beta}(|f|)(x);
$$

therefore

$$
\left(\int_0^\infty |R_{a,\beta}(f)(x)|^p A_{a,\beta}(x) dx \right)^{1/p} \leq C_{p,a,\beta} \left(\int_0^\infty (|f(x)|)^p A_{a,\beta}(x) dx \right)^{1/p}.
$$

(4.48)

This completes the proof of Theorem 4.2(1).

(2) From Theorem 2.3, we deduce that there exists a positive constant $D_{p,a,\beta}$ such that for every nonnegative measurable function h, we have

$$
\left(\int_0^\infty (T^*_\varphi(h)(x))^p \nu(x) dx \right)^{1/p'} \leq D_{p,a,\beta} \left(\int_0^\infty (h(x))^{p'} \mu(x) dx \right)^{1/p'}.
$$

(4.49)

Let g be a nonnegative measurable function, by setting

$$
h(t) = t^{(p-1)/2} A_{a,\beta}^{(1/2)}(t) g(t)
$$

and using the inequality (4.49), we deduce that

$$
\left(\int_0^\infty \left(\frac{1}{A_{a,\beta}(x)} T^*_\varphi(g)(x) \right)^{p'} A_{a,\beta}(x) dx \right)^{1/p'} \leq D_{p,a,\beta} \left(\int_0^\infty (g(x))^{p'} A_{a,\beta}(x) dx \right)^{1/p'}.
$$

(4.51)

where

$$
T^*_\varphi(g)(x) = \int_x^\infty (t-x)^{\alpha-1/2} g(t) A_{a,\beta}^{1/2}(t) dt
$$

is the dual operator of $T_{a,\beta}$.

Furthermore for every nonnegative measurable function g, we have

$$
W_{a,\beta}(g)(x) \leq a_{a,\beta} T^*_\varphi(g)(x),
$$

(4.53)
where $a_{\alpha, \beta}$ is the constant given by Lemma 4.3. Hence both inequalities (4.51) and (4.53) involve that there exists a positive constant $C_{p, \alpha, \beta}$ such that, for every nonnegative measurable function g, we have

$$\left(\int_0^\infty \left(\frac{1}{A_{\alpha, \beta}(x)} W_{\alpha, \beta}(g)(x) \right)^{\frac{1}{p'}} A_{\alpha, \beta}(x) \, dx \right)^{1/p'} \leq C_{p, \alpha, \beta} \left(\int_0^\infty (g(x))^{\frac{1}{p'}} A_{\alpha, \beta}(x) \, dx \right)^{1/p'}.$$

(4.54)

For $g \in L^{p'}([0, \infty), W_{\alpha, \beta}(x) \, dx)$, we complete the proof as the first assertion. □

Theorem 4.4. For $-1/2 < \beta \leq \alpha < 1/2$, $\alpha + \beta > 0$, and $p > \max(2\alpha + 2, (4\alpha + 4\beta + 4)/(4\alpha + 2\beta + 1))$, there exists a positive constant $C_{p, \alpha, \beta}$ such that

1. For every function $f \in L^p(]0, \infty[, A_{\alpha, \beta}(x) \, dx)$,
 $$\| R_{\alpha, \beta}(f) \|_{p, \alpha, \beta} \leq C_{p, \alpha, \beta} \| f \|_{p, \alpha, \beta},$$
 (4.55)

2. For every function $g \in L^{p'}(]0, \infty[, A_{\alpha, \beta}(x) \, dx)$,
 $$\left\| \frac{1}{A_{\alpha, \beta}(x)} W_{\alpha, \beta}(g) \right\|_{p', \alpha, \beta} \leq C_{p, \alpha, \beta} \| g \|_{p', \alpha, \beta},$$
 (4.56)

where

$$p' = \frac{p}{p-1}.$$

(4.57)

The proof of this theorem needs the following lemma.

Lemma 4.5. For all $-1/2 < \beta \leq \alpha < 1/2$, and $\alpha + \beta > 0$,

$$\forall x > y > 0, \quad 0 \leq k_{\alpha, \beta}(x, y) \leq b_{\alpha, \beta}(x - y)^{\alpha - 1/2} \frac{1}{\cosh^{\alpha+\beta}(x) \sinh^{\alpha+1/2}(x)},$$

(4.58)

where

$$b_{\alpha, \beta} = 2M_{\alpha, \beta} \frac{\Gamma(\alpha + 1)}{\Gamma(\alpha + 1/2) \sqrt{\pi}};$$

$$M_{\alpha, \beta} = \max_{0 \leq t \leq 1/2} \left| F(\alpha + \beta, \alpha - \beta; \alpha + 1/2; t) \right|.$$

(4.59)

Proof of Lemma 4.5. from relation (1.3) and the fact that $\beta \leq \alpha$ we deduce that

$$\forall x > y > 0, \quad 0 \leq k_{\alpha, \beta}(x, y)$$

$$\leq \frac{2^{-\alpha+3/2} M_{\alpha, \beta} \Gamma(\alpha + 1)}{\Gamma(\alpha + 1/2) \sqrt{\pi}}$$

$$\times (\cosh 2x - \cosh 2y)^{\alpha - 1/2} \frac{1}{\cosh^{\alpha+\beta}(x) \sinh^{2\beta}(x)}.$$

(4.60)
On the other hand
\[
cosh(2x) - \cosh(2y) = 2(\sinh(x) - \sinh(y))(\sinh(x) + \sinh(y)) \geq 2\sinh(x)(\sinh(x) - \sinh(y)).
\] (4.61)

From mean value’s theorem and the fact that \(\alpha < \frac{1}{2}\), we have
\[
(\sinh(x) - \sinh(y))^{a-1/2} \leq (x - y)^{a-1/2};
\] (4.62)

by using the inequalities (4.60), (4.61), and (4.62) we deduce that
\[
k_{\alpha,\beta}(x,y) \leq 2M_{\alpha,\beta} \frac{\Gamma(\alpha + 1)}{\Gamma(\alpha + 1/2)\sqrt{\pi}} \frac{1}{\cosh^{\alpha+\beta}(x)\sinh^{\alpha+1/2}(x)} \cdot
\] (4.63)

which proves the Lemma 4.5. □

Proof of Theorem 4.4. In this proof, we consider the functions \(\varphi\), \(\nu\) and the measure \(d\mu\) defined, respectively, by
\[
\varphi(t) = (1 - t)^{a-1/2},
\]
\[
\nu(t) = A_{\alpha,\beta}^{-p'}(t),
\] (4.64)
\[
d\mu(t) = t^{p(a-1/2)} \sinh^{2a+1-p(\alpha+1/2)}(t) \cosh^{2\beta+1-p(\alpha+\beta)}(t) dt.
\] (4.65)

(i) Since \(-1/2 < \alpha < 1/2\), the function \(\varphi\) is increasing on \(]0,1[\).
(ii) For \(p > 2\alpha + 2\), \(\int_0^a \nu(t) dt < \infty\) for all \(a > 0\).
(iii) \(\int_a^b d\mu(t) < \infty\) for \(0 < a < b < \infty\).

We will prove that the operator \(T_{\varphi}\) satisfies the sufficient conditions of Theorem 3.1, that is, there exists \(\lambda \in [0,1]\) such that the function
\[
F(r) = \left(\int_r^\infty \varphi \left(\frac{r}{x} \right)^{\lambda p} d\mu(x) \right)^{1/p} \left(\int_0^r \varphi \left(\frac{x}{r} \right)^{p'(1-\lambda)} \nu(x) dx \right)^{1/p'}
\] (4.66)

is bounded on \(]0,\infty[\). In fact we denote
\[
I(r) = \left(\int_r^\infty \varphi \left(\frac{r}{x} \right)^{\lambda p} d\mu(x) \right)^{1/p},
\]
\[
J(r) = \left(\int_0^r \varphi \left(\frac{x}{r} \right)^{p'(1-\lambda)} \nu(x) dx \right)^{1/p'}.
\] (4.67)

Since \(\alpha < 1/2\) and \(p > \max(2\alpha + 2, (4\alpha + 4\beta + 4)/(4\alpha + 2\beta + 1))\), we deduce that
\[
(I(r))^p \leq M_{\alpha,\beta,p} \int_r^\infty h(x) dx,
\] (4.68)
where

$$M_{\alpha,\beta,p} = \max \left[\sup_{[0,1]} \left(\frac{\sinh(x)}{x} \right)^{2\alpha+1-p(\alpha+1/2)} \cosh^{2\beta+1-p(\alpha+1/2)}(x) \right],$$

$$\sup_{[1,\infty]} \left(\cosh^{2\beta+1-p(\alpha+1/2)}(x) \sinh^{2\alpha+1-p(\alpha+1/2)}(x)e^{p(2\alpha+\beta+1/2)-(2\alpha+2\beta+2)x} \right),$$

$$h(x) = \begin{cases} \left(1 - \frac{r}{x} \right)^{(a-1/2)\lambda p} x^{2\alpha+1-p}, & 0 < x \leq 1, \\ \left(1 - \frac{r}{x} \right)^{(a-1/2)\lambda p} e^{(2\alpha+2\beta+2-p(2\alpha+\beta+1/2))x}, & 1 < x. \end{cases}$$

(4.68)

So if we pick λ in $] \max(0, (1 - p(1/2 + \alpha))/p(1/2 - \alpha)); \min(1, 1/p(1/2 - \alpha))]$, we can prove that there exist $C_1(\alpha,\beta, p) > 0$ and $C_2(\alpha,\beta, p) > 0$ such that

$$I(r) \leq C_1(\alpha,\beta, p) r^{(2\alpha+2-p)/p},$$

$$J(r) \leq C_2(\alpha,\beta, p) r^{(2\alpha+1)(1-p')+(1-p')}/p'.$$

(4.69)

This involves that the function F is bounded on $]0, \infty[$. Then from Theorems 3.1 and 3.2, we know that there exists a positive constant $C_{p,\alpha,\beta}$ such that for every nonnegative measurable function g, we have

$$\left(\int_0^\infty (T_{\phi}(g)(x))^p d\mu(x) \right)^{1/p} \leq C_{p,\alpha,\beta} \left(\int_0^\infty (g(x))^p \nu(x) dt \right)^{1/p},$$

$$\left(\int_0^\infty (T_{\phi}^*(g)(x))^p' \nu(x) dx \right)^{1/p'} \leq C_{p,\alpha,\beta}^* \left(\int_0^\infty (g(x))^p' d\mu(x) \right)^{1/p'}. (4.70)$$

Let $K_{\alpha,\beta}$ be the integral operator defined by

$$\forall x > 0, \quad K_{\alpha,\beta}(f)(x) = \frac{1}{\cosh^{\alpha+\beta}(x) \sinh^{\alpha+1/2}(x) \int_0^x (x - y)^{\alpha-1/2} f(y) dy}$$

(4.71)

and its dual defined by

$$\forall x > 0, \quad K^*_{\alpha,\beta}(f)(x) = \int_x^\infty (t-x)^{\alpha-1/2} f(t) \sinh^{(1/2+\alpha)}(t) \cosh^{(\beta-a+1)}(t) dt. (4.72)$$

The operators T_{ϕ} and $K_{\alpha,\beta}$, respectively, T_{ϕ}^* and $K^*_{\alpha,\beta}$ are connected by the relation

$$\forall x > 0, \quad T_{\phi}(g_1)(x) = x^{1/2-a} \cos^{\alpha+\beta}(x) \sinh^{\alpha+1/2}(x) K_{\alpha,\beta}(f)(x),$$

(4.73)

where

$$\forall x > 0, \quad g_1(x) = f(x) \left(A_{\alpha,\beta}(x) \right)^{p'-1}, (4.74)$$
respectively,

\[\forall x > 0, \quad T^*_\varphi (g_2)(x) = K^*_\alpha, \beta (f)(x), \tag{4.75} \]

where

\[g_2(x) = f(x)x^{(p-1)(1/2-\alpha)} \sinh^{(p-1)(1/2+\alpha)}(x) \cosh^{(p-1)(\alpha+\beta)}(x). \tag{4.76} \]

The relations (4.70), (4.73), and (4.75) imply that for every nonnegative measurable function \(f \), we have

\[
\left(\int_0^\infty (K_{\alpha, \beta}(f)(x))^p A_{\alpha, \beta}(x) \, dx \right)^{1/p} \leq D_{p, \alpha, \beta} \left(\int_0^\infty (f(x))^p A_{\alpha, \beta}(x) \, dx \right)^{1/p},
\]

\[
\left(\int_0^\infty \left(\frac{1}{A_{\alpha, \beta}(x)} K^*_{\alpha, \beta}(f)(x) \right)^{p'} A_{\alpha, \beta}(x) \, dx \right)^{1/p'} \leq D_{p, \alpha, \beta} \left(\int_0^\infty (f(x))^{p'} A_{\alpha, \beta}(x) \, dx \right)^{1/p'}. \tag{4.77} \]

We complete the proof of Theorem 4.4 by the same way as Theorem 4.2 and using Lemma 4.5. \(\square \)

References

Hardy-type inequalities

M. Dziri: Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis, 1060 Tunis, Tunisia
E-mail address: moncef.dziri@iscaei.rnu.tn

L. T. Rachdi: Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis, 1060 Tunis, Tunisia
E-mail address: lakhdartannech.rachdi@fst.rnu.tn
Mathematical Problems in Engineering

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>March 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>June 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>September 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied Mathematics and Computing, Institute of Geosciences and Exact Sciences, State University of São Paulo at Rio Claro, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru