Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 10 (2014), 093, 16 pages      arXiv:1408.5540
Contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rieffel

Generalized Coefficients for Hopf Cyclic Cohomology

Mohammad Hassanzadeh, Dan Kucerovsky and Bahram Rangipour
University of New Brunswick, Fredericton, Canada

Received August 19, 2013, in final form August 22, 2014; Published online September 01, 2014

A category of coefficients for Hopf cyclic cohomology is defined. It is shown that this category has two proper subcategories of which the smallest one is the known category of stable anti Yetter-Drinfeld modules. The middle subcategory is comprised of those coefficients which satisfy a generalized SAYD condition depending on both the Hopf algebra and the (co)algebra in question. Some examples are introduced to show that these three categories are different. It is shown that all components of Hopf cyclic cohomology work well with the new coefficients we have defined.

Key words: cyclic cohomology; Hopf algebras; noncommutative geometry.

pdf (373 kb)   tex (20 kb)


  1. Böhm G., Ştefan D., (Co)cyclic (co)homology of bialgebroids: an approach via (co)monads, Comm. Math. Phys. 282 (2008), 239-286, arXiv:0705.3190.
  2. Connes A., Cohomologie cyclique et foncteurs ${\rm Ext}^n$, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 953-958.
  3. Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
  4. Connes A., Moscovici H., Hopf algebras, cyclic cohomology and the transverse index theorem, Comm. Math. Phys. 198 (1998), 199-246, math.DG/9806109.
  5. Hajac P.M., Khalkhali M., Rangipour B., Sommerhäuser Y., Hopf-cyclic homology and cohomology with coefficients, C. R. Math. Acad. Sci. Paris 338 (2004), 667-672, math.KT/0306288.
  6. Hajac P.M., Khalkhali M., Rangipour B., Sommerhäuser Y., Stable anti-Yetter-Drinfeld modules, C. R. Math. Acad. Sci. Paris 338 (2004), 587-590, math.QA/0405005.
  7. Jara P., Ştefan D., Hopf-cyclic homology and relative cyclic homology of Hopf-Galois extensions, Proc. London Math. Soc. 93 (2006), 138-174, math.KT/0307099.
  8. Kaygun A., Bialgebra cyclic homology with coefficients, $K$-Theory 34 (2005), 151-194, math.KT/0409191.
  9. Kaygun A., Products in Hopf-cyclic cohomology, Homology, Homotopy Appl. 10 (2008), 115-133, arXiv:0710.2559.
  10. Khalkhali M., Rangipour B., Cup products in Hopf-cyclic cohomology, C. R. Math. Acad. Sci. Paris 340 (2005), 9-14, math.QA/0411003.
  11. Kowalzig N., Krähmer U., Cyclic structures in algebraic (co)homology theories, Homology Homotopy Appl. 13 (2011), 297-318, arXiv:1011.3471.
  12. Loday J.L., Cyclic homology, Grundlehren der Mathematischen Wissenschaften, Vol. 301, Springer-Verlag, Berlin, 1992.
  13. Moscovici H., Rangipour B., Hopf algebras of primitive Lie pseudogroups and Hopf cyclic cohomology, Adv. Math. 220 (2009), 706-790, arXiv:0803.1320.
  14. Rangipour B., Cup products in Hopf cyclic cohomology via cyclic modules, Homology, Homotopy Appl. 10 (2008), 273-286, arXiv:0710.2623.
  15. Rangipour B., Sütlü S., SAYD modules over Lie-Hopf algebras, Comm. Math. Phys. 316 (2012), 199-236, arXiv:1108.6101.
  16. Staic M.D., A note on anti-Yetter-Drinfeld modules, in Hopf algebras and generalizations, Contemp. Math., Vol. 441, Amer. Math. Soc., Providence, RI, 2007, 149-153.

Previous article  Next article   Contents of Volume 10 (2014)