Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 10 (2014), 104, 26 pages      arXiv:1411.1839
Contribution to the Special Issue on Deformations of Space-Time and its Symmetries

Effects of a Maximal Energy Scale in Thermodynamics for Photon Gas and Construction of Path Integral

Sudipta Das, Souvik Pramanik and Subir Ghosh
Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, India

Received April 13, 2014, in final form October 25, 2014; Published online November 07, 2014; Text overlap with [59] removed November 13, 2014

In this article, we discuss some well-known theoretical models where an observer-independent energy scale or a length scale is present. The presence of this invariant scale necessarily deforms the Lorentz symmetry. We study different aspects and features of such theories about how modifications arise due to this cutoff scale. First we study the formulation of energy-momentum tensor for a perfect fluid in doubly special relativity (DSR), where an energy scale is present. Then we go on to study modifications in thermodynamic properties of photon gas in DSR. Finally we discuss some models with generalized uncertainty principle (GUP).

Key words: invariant energy scale; doubly special relativity (DSR); generalized uncertainty principle (GUP).

pdf (540 kb)   tex (76 kb)       [previous version:  pdf (541 kb)   tex (76 kb)]


  1. Albrecht A., Magueijo J., A time varying speed of light as a solution to cosmological puzzles, Phys. Rev. D 59 (1999), 043516, 13 pages, astro-ph/9811018.
  2. Alexander S., Magueijo J., Noncommutative geometry as a realization of varying speed of light cosmology, hep-th/0104093.
  3. Ali A.F., Majumder B., Towards a cosmology with minimal length and maximal energy, arXiv:1402.5104.
  4. Amati D., Ciafaloni M., Veneziano G., Can spacetime be probed below the string size?, Phys. Lett. B 216 (1989), 41-47.
  5. Amelino-Camelia G., Testable scenario for relativity with minimum-length, Phys. Lett. B 510 (2001), 255-263, hep-th/0012238.
  6. Amelino-Camelia G., Doubly-special relativity: first results and key open problems, Internat. J. Modern Phys. D 11 (2002), 1643-1669, gr-qc/0210063.
  7. Amelino-Camelia G., Relativity: special treatment, Nature 418 (2002), 34-35, gr-qc/0207049.
  8. Amelino-Camelia G., Quantum-spacetime phenomenology, Living Rev. Relativity 16 (2013), 8, 137 pages, arXiv:0806.0339.
  9. Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., The principle of relative locality, Phys. Rev. D 84 (2011), 084010, 13 pages, arXiv:1101.0931.
  10. Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., Relative locality and the soccer ball problem, Phys. Rev. D 84 (2011), 087702, 5 pages, arXiv:1104.2019.
  11. Amelino-Camelia G., Piran T., Planck-scale deformation of Lorentz symmetry as a solution to the ultrahigh energy cosmic ray and the TeV-photon paradoxes, Phys. Rev. D 64 (2001), 036005, 12 pages, astro-ph/0008107.
  12. Awad A., Ali A.F., Planck-scale corrections to Friedmann equation, Cent. Eur. J. Phys. 12 (2014), 245-255, arXiv:1403.5319.
  13. Banerjee R., Kulkarni S., Samanta S., Deformed symmetry in Snyder space and relativistic particle dynamics, J. High Energy Phys. 2006 (2006), no. 5, 077, 22 pages, hep-th/0602151.
  14. Banerjee R., Kumar K., Roychowdhury D., Symmetries of Snyder-de Sitter space and relativistic particle dynamics, J. High Energy Phys. 2011 (2011), no. 3, 060, 14 pages, arXiv:1101.2021.
  15. Bertolami O., Zarro C.A.D., Towards a noncommutative astrophysics, Phys. Rev. D 81 (2010), 025005, 8 pages, arXiv:0908.4196.
  16. Bojowald M., Quantum gravity effects on space-time, arXiv:1002.2618.
  17. Bruno N.R., Amelino-Camelia G., Kowalski-Glikman J., Deformed boost transformations that saturate at the Planck scale, Phys. Lett. B 522 (2001), 133-138, hep-th/0107039.
  18. Camacho A., Macías A., Thermodynamics of a photon gas and deformed dispersion relations, Gen. Relativity Gravitation 39 (2007), 1175-1183, gr-qc/0702150.
  19. Cohen A.G., Glashow S.L., Very special relativity, Phys. Rev. Lett. 97 (2006), 021601, 3 pages, hep-ph/0601236.
  20. Das S., Ghosh S., Roychowdhury D., Relativistic thermodynamics with an invariant energy scale, Phys. Rev. D 80 (2009), 125036, 6 pages, arXiv:0908.0413.
  21. Das S., Ghosh S., Mignemi S., Non-commutative spacetime in very special relativity, Phys. Lett. A 375 (2011), 3237-3242, arXiv:1004.5356.
  22. Das S., Pramanik S., Path integral for nonrelativistic generalized uncertainty principle corrected Hamiltonian, Phys. Rev. D 86 (2012), 085004, 7 pages, arXiv:1205.3919.
  23. Das S., Roychowdhury D., Thermodynamics of photon gas with an invariant energy scale, Phys. Rev. D 81 (2010), 085039, 7 pages, arXiv:1002.0192.
  24. Das S., Vagenas E.C., Universality of quantum gravity corrections, Phys. Rev. Lett. 101 (2008), 221301, 4 pages, arXiv:0810.5333.
  25. Daszkiewicz M., Lukierski J., Woronowicz M., Towards quantum noncommutative $\kappa$-deformed field theory, Phys. Rev. D 77 (2008), 105007, 10 pages, arXiv:0708.1561.
  26. Deriglazov A.A., Poincaré covariant mechanics on noncommutative space, J. High Energy Phys. 2003 (2003), no. 3, 021, 9 pages, hep-th/0211105.
  27. Dirac P.A.M., Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series, Vol. 2, Belfer Graduate School of Science, New York, 1967.
  28. Feynman R.P., Hibbs A.R., Quantum mechanics and path integral, McGraw-Hill, New York, 1965.
  29. Gangopadhyay S., Dutta A., Saha A., Generalized uncertainty principle and black hole thermodynamics, Gen. Relativity Gravitation 46 (2014), 1661, 10 pages, arXiv:1307.7045.
  30. Garay L.J., Quantum gravity and minimum length, Internat. J. Modern Phys. A 10 (1995), 145-166, gr-qc/9403008.
  31. Garrod C., Hamiltonian path-integral methods, Rev. Modern Phys. 38 (1966), 483-494.
  32. Ghosh S., DSR relativistic particle in a Lagrangian formulation and non-commutative spacetime: a gauge independent analysis, Phys. Lett. B 648 (2007), 262-265, hep-th/0602009.
  33. Ghosh S., Pal P., $\kappa$-Minkowski spacetime through exotic ''oscillator'', Phys. Lett. B 618 (2005), 243-251, hep-th/0502192.
  34. Ghosh S., Pal P., Deformed special relativity and deformed symmetries in a canonical framework, Phys. Rev. D 75 (2007), 105021, 11 pages, hep-th/0702159.
  35. Ghosh S., Roy P., Stringy coherent states inspired by generalized uncertainty principle, Phys. Lett. B 711 (2012), 423-427, arXiv:1110.5136.
  36. Gibbons G.W., Gomis J., Pope C.N., General very special relativity is Finsler geometry, Phys. Rev. D 76 (2007), 081701, 5 pages, arXiv:0707.2174.
  37. Girelli F., Konopka T., Kowalski-Glikman J., Livine E.R., Free particle in deformed special relativity, Phys. Rev. D 73 (2006), 045009, 14 pages, hep-th/0512107.
  38. Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, Academic Press, New York - London, 1965.
  39. Granik A., Maguejo-Smolin transformation as a consequence of a specific definition of mass, velocity, and the upper limit on energy, hep-th/0207113.
  40. Greiner W., Stocker N., Thermodynamics and statistical mechanics, Springer-Verlag, New York, 1995.
  41. Hanson A.J., Regge T., Teitelboim C., Constrained Hamiltonian system, Accademia Nazionale Dei Lincei, Roma, 1976.
  42. Hossenfelder S., A note on theories with a minimal length, Classical Quantum Gravity 23 (2006), 1815-1821, hep-th/0510245.
  43. Hossenfelder S., Multiparticle states in deformed special relativity, Phys. Rev. D 75 (2007), 105005, 8 pages, hep-th/0702016.
  44. Hossenfelder S., Minimal length scale scenarios for quantum gravity, Living Rev. Relativity 16 (2013), 2, 90 pages, arXiv:1203.6191.
  45. Hossenfelder S., The soccer-ball problem, SIGMA 10 (2014), 074, 8 pages, arXiv:1403.2080.
  46. Hossenfelder S., Bleicher M., Hofmann S., Ruppert J., Scherer S., Stöcker H., Signatures in the Planck regime, Phys. Lett. B 575 (2003), 85-99, hep-th/0305262.
  47. Judes S., Visser M., Conservation laws in ''doubly special relativity'', Phys. Rev. D 68 (2003), 045001, 4 pages, gr-qc/0205067.
  48. Kempf A., Non-pointlike particles in harmonic oscillators, J. Phys. A: Math. Gen. 30 (1997), 2093-2101, hep-th/9604045.
  49. Kempf A., Mangano G., Minimal length uncertainty relation and ultraviolet regularisation, Phys. Rev. D 55 (1997), 7909-7920, hep-th/9612084.
  50. Kempf A., Mangano G., Mann R.B., Hilbert space representation of the minimal length uncertainty relation, Phys. Rev. D 52 (1995), 1108-1118, hep-th/9412167.
  51. Kowalski-Glikman J., Nowak S., Doubly special relativity theories as different bases of $\kappa$-Poincaré algebra, Phys. Lett. B 539 (2002), 126-132, hep-th/0203040.
  52. Ling Y., Wu Q., The big bounce in rainbow universe, Phys. Lett. B 687 (2010), 103-109, arXiv:0811.2615.
  53. Lukierski J., Nowicki A., Doubly special relativity versus $\kappa$-deformation of relativistic kinematics, Internat. J. Modern Phys. A 18 (2003), 7-18, hep-th/0203065.
  54. Maggiore M., A generalized uncertainty principle in quantum gravity, Phys. Lett. B 304 (1993), 65-69, hep-th/9301067.
  55. Maggiore M., The algebraic structure of the generalized uncertainty principle, Phys. Lett. B 319 (1993), 83-86, hep-th/9309034.
  56. Maggiore M., Quantum groups, gravity, and the generalized uncertainty principle, Phys. Rev. D 49 (1994), 5182-5187, hep-th/9305163.
  57. Magueijo J., New varying speed of light theories, Rep. Progr. Phys. 66 (2003), 2025-2068, astro-ph/0305457.
  58. Magueijo J., Smolin L., Lorentz invariance with an invariant energy scale, Phys. Rev. Lett. 88 (2002), 190403, 4 pages, hep-th/0112090.
  59. Magueijo J., Smolin L., Generalized Lorentz invariance with an invariant energy scale, Phys. Rev. D 67 (2003), 044017, 12 pages, gr-qc/0207085.
  60. Magueijo J., Smolin L., Gravity's rainbow, Classical Quantum Gravity 21 (2004), 1725-1736, gr-qc/0305055.
  61. Majhi B.R., Vagenas E., Modified dispersion relation, photon's velocity, and Unruh effect, Phys. Lett. B 725 (1993), 477-480, arXiv:1307.4195.
  62. Mersini-Houghton L., Bastero-Gil M., Kanti P., Relic dark energy from transPlanckian regime, Phys. Rev. D 64 (2001), 043508, 9 pages, hep-ph/0101210.
  63. Mignemi S., Transformations of coordinates and Hamiltonian formalism in deformed special relativity, Phys. Rev. D 68 (2003), 065029, 6 pages, gr-qc/0304029.
  64. Mignemi S., Doubly special relativity and translation invariance, Phys. Lett. B 672 (2009), 186-189, arXiv:0808.1628.
  65. Misner C.W., Thorne K.S., Wheeler J.A., Gravitation, W.H. Freeman and Co., San Francisco, Calif., 1973.
  66. Moffat J.W., Superluminary universe: a Possible solution to the initial value problem in cosmology, Internat. J. Modern Phys. D 2 (1993), 351-366, gr-qc/9211020.
  67. Pathria R.K., Statistical mechanics, Butterworth-Heinemann, Oxford, 1996.
  68. Pinzul A., Stern A., Space-time noncommutativity from particle mechanics, Phys. Lett. B 593 (2004), 279-286, hep-th/0402220.
  69. Pramanik S., Ghosh S., GUP-based and Snyder noncommutative algebras, relativistic particle models, deformed symmetries and interaction: a unified approach, Internat. J. Modern Phys. A 28 (2013), 1350131, 15 pages, arXiv:1301.4042.
  70. Quesne C., Tkachuk V.M., Composite system in deformed space with minimal length, Phys. Rev. A 81 (2010), 012106, 8 pages, arXiv:0906.0050.
  71. Snyder H.S., Quantized space-time, Phys. Rev. 71 (1947), 38-41.
  72. Tawfik A., Magdy H., Farag Ali A., Effects of quantum gravity on the inflationary parameters and thermodynamics of the early universe, Gen. Relativity Gravitation 45 (2013), 1227-1246, arXiv:1208.5655.
  73. Townsend P.K., Small-scale structure of spacetime as the origin of the gravitational constant, Phys. Rev. D 15 (1977), 2795-2801.
  74. Veneziano G., A stringy nature needs just two constants, Europhys. Lett. 2 (1986), 199-204.
  75. Weinberg S., Gravitation and cosmology: principles and applications of general theory of relativity, John Wiley & Sons, London, 1972.

Previous article  Next article   Contents of Volume 10 (2014)