Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 12 (2016), 047, 12 pages      arXiv:1602.07927

Nonstandard Deformed Oscillators from $q$- and $p,q$-Deformations of Heisenberg Algebra

Alexandre M. Gavrilik a and Ivan I. Kachurik ab
a) Bogolyubov Institute for Theoretical Physics, 14-b Metrolohichna Str., Kyiv, 03680 Ukraine
b) Khmelnytskyi National University, 11 Instytutska Str., Khmelnytskyi, 29016 Ukraine

Received February 12, 2016, in final form May 06, 2016; Published online May 12, 2016

For the two-parameter $p,q$-deformed Heisenberg algebra introduced recently and in which, instead of usual commutator of $X$ and $P$ in the l.h.s. of basic relation $[X,P] = {\rm i}\hbar$, one uses the $p,q$-commutator, we established interesting properties. Most important is the realizability of the $p,q$-deformed Heisenberg algebra by means of the appropriate deformed oscillator algebra. Another uncovered property is special extension of the usual mutual Hermitian conjugation of the creation and annihilation operators, namely the so-called $\eta(N)$-pseudo-Hermitian conjugation rule, along with the related $\eta(N)$-pseudo-Hermiticity property of the position or momentum operators. In this work, we present some new solutions of the realization problem yielding new (nonstandard) deformed oscillators, and show their inequivalence to the earlier known solution and the respective deformed oscillator algebra, in particular what concerns ground state energy.

Key words: deformed Heisenberg algebra; position and momentum operators; deformed oscillators; structure function of deformation; deformation parameters; ground state energy.

pdf (377 kb)   tex (29 kb)


  1. Adamska L.V., Gavrilik A.M., Multi-particle correlations in $qp$-Bose gas model, J. Phys. A: Math. Gen. 37 (2004), 4787-4795, hep-ph/0312390.
  2. Algin A., Bose-Einstein condensation in a gas of Fibonacci oscillators, J. Stat. Mech. Theory Exp. 2008 (2008), P1009, 23 pages, arXiv:0810.1827.
  3. Arik M., Coon D.D., Hilbert spaces of analytic functions and generalized coherent states, J. Math. Phys. 17 (1976), 524-527.
  4. Arik M., Demircan E., Turgut T., Ekinci L., Mungan M., Fibonacci oscillators, Z. Phys. C 55 (1992), 89-95.
  5. Bagchi B., Fring A., Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems, Phys. Lett. A 373 (2009), 4307-4310, arXiv:0907.5354.
  6. Biedenharn L.C., The quantum group ${\rm SU}_q(2)$ and a $q$-analogue of the boson operators, J. Phys. A: Math. Gen. 22 (1989), L873-L878.
  7. Brodimas G., Jannussis A., Mignani R., Bose realization of a noncanonical Heisenberg algebra, J. Phys. A: Math. Gen. 25 (1992), L329-L334.
  8. Calisto H., Leiva C., Generalized commutation relations and nonlinear momenta theories: a close relationship, Internat. J. Modern Phys. D 16 (2007), 927-940, hep-th/0509227.
  9. Chakrabarti A., Jagannathan R., A $(p,q)$-oscillator realization of two-parameter quantum algebras, J. Phys. A: Math. Gen. 24 (1991), L711-L718.
  10. Chaturvedi S., Srinivasan V., Jagannathan R., Tamm-Dancoff deformation of bosonic oscillator algebras, Modern Phys. Lett. A 8 (1993), 3727-3734.
  11. Chung W.S., Gavrilik A.M., Kachurik I.I., Rebesh A.P., The symmetric Tamm-Dancoff $q$-oscillator: the representation, quasi-Fibonacci nature, accidental degeneracy and coherent states, J. Phys. A: Math. Theor. 47 (2014), 305304, 14 pages, arXiv:1402.7241.
  12. Chung W.S., Klimyk A.U., On position and momentum operators in the $q$-oscillator algebra, J. Math. Phys. 37 (1996), 917-932.
  13. Dorsch G.C., Nogueira J.A., Maximally localized states in quantum mechanics with a modified commutation relation to all orders, Internat. J. Modern Phys. A 27 (2012), 1250113, 18 pages, arXiv:1106.2737.
  14. Garay L.J., Quantum gravity and minimum length, Internat. J. Modern Phys. A 10 (1995), 145-166, \mboxgr-qc/9403008.
  15. Gavrilik A.M., Combined analysis of two- and three-particle correlations in $q,p$-Bose gas model, SIGMA 2 (2006), 074, 12 pages, hep-ph/0512357.
  16. Gavrilik A.M., Kachurik I.I., Three-parameter (two-sided) deformation of Heisenberg algebra, Modern Phys. Lett. A 27 (2012), 1250114, 12 pages, arXiv:1204.2817.
  17. Gavrilik A.M., Kachurik I.I., New version of pseudo-hermiticity in the two-sided deformation of Heisenberg algebra, Modern Phys. Lett. A 31 (2016), 1650024, 15 pages, arXiv:1503.04143.
  18. Gavrilik A.M., Kachurik I.I., Rebesh A.P., Quasi-Fibonacci oscillators, J. Phys. A: Math. Theor. 43 (2010), 245204, 16 pages, arXiv:1002.0601.
  19. Gavrilik A.M., Mishchenko Yu.A., Deformed Bose gas models aimed at taking into account both compositeness of particles and their interaction, Ukr. J. Phys. 58 (2013), 1171-1177, arXiv:1312.1573.
  20. Gavrilik A.M., Mishchenko Yu.A., Correlation function intercepts for $\tilde\mu,q$-deformed Bose gas model implying effective accounting for interaction and compositeness of particles, Nuclear Phys. B 891 (2015), 466-481, arXiv:1411.5955.
  21. Gavrilik A.M., Rebesh A.P., A $q$-oscillator with ''accidental'' degeneracy of energy levels, Modern Phys. Lett. A 22 (2007), 949-960, quant-ph/0612122.
  22. Gavrilik A.M., Rebesh A.P., Deformed oscillators with two double (pairwise) degeneracies of energy levels, SIGMA 3 (2007), 112, 11 pages, arXiv:0710.0841.
  23. Gavrilik A.M., Rebesh A.P., Occurrence of pairwise energy level degeneracies in $q,p$-oscillator model, Ukr. J. Phys. 53 (2008), 586-594, arXiv:0805.4173.
  24. Gavrilik A.M., Rebesh A.P., Plethora of $q$-oscillators possessing pairwise energy level degeneracy, Modern Phys. Lett. A 23 (2008), 921-932, arXiv:1306.6573.
  25. Gavrilik A.M., Rebesh A.P., Intercepts of the momentum correlation functions in $\mu$-Bose gas model and their asymptotics, Eur. Phys. J. A 47 (2011), 55, 8 pages, arXiv:1007.5187.
  26. Gavrilik A.M., Rebesh A.P., Deformed gas of $p,q$-bosons: virial expansion and virial coefficients, Modern Phys. Lett. B 26 (2012), 1150030, 13 pages, arXiv:1111.7216.
  27. Hossenfelder S., A note on theories with a minimal length, Classical Quantum Gravity 23 (2006), 1815-1821, hep-th/0510245.
  28. Jannussis A., New deformed Heisenberg oscillator, J. Phys. A: Math. Gen. 26 (1993), L233-L237.
  29. Kempf A., Uncertainty relation in quantum mechanics with quantum group symmetry, J. Math. Phys. 35 (1994), 4483-4496, hep-th/9311147.
  30. Liu Y.-X., Sun C.P., Yu S.X., Zhou D.L., Semiconductor-cavity QED in high-$Q$ regimes with $q$-deformed bosons, Phys. Rev. A 63 (2001), 023802, 5 pages.
  31. Macfarlane A.J., On $q$-analogues of the quantum harmonic oscillator and the quantum group ${\rm SU}(2)_q$, J. Phys. A: Math. Gen. 22 (1989), 4581-4588.
  32. Masłowski T., Nowicki A., Tkachuk V.M., Deformed Heisenberg algebra and minimal length, J. Phys. A: Math. Theor. 45 (2012), 075309, 5 pages, arXiv:1201.5545.
  33. Meljanac S., Mileković M., Pallua S., Unified view of deformed single-mode oscillator algebras, Phys. Lett. B 328 (1994), 55-59, hep-th/9404039.
  34. Plyushchay M.S., Deformed Heisenberg algebra, fractional spin fields, and supersymmetry without fermions, Ann. Physics 245 (1996), 339-360, hep-th/9601116.
  35. Plyushchay M.S., Deformed Heisenberg algebra with reflection, Nuclear Phys. B 491 (1997), 619-634, hep-th/9701091.
  36. Rovenchak A., Complex-valued fractional statistics for $D$-dimensional harmonic oscillators, Phys. Lett. A 378 (2014), 100-108.
  37. Saavedra I., Utreras C., A generalization of quantum mechanics for high energies and quark physics, Phys. Lett. B 98 (1981), 74-76.
  38. Schwenk J., Wess J., A $q$-deformed quantum mechanical toy model, Phys. Lett. B 291 (1992), 273-277.

Previous article  Next article   Contents of Volume 12 (2016)