Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 12 (2016), 057, 11 pages      arXiv:1602.07212

Singular Instantons and Painlevé VI

Richard Muñiz Manasliski
Centro de Matemática, Facultad de Ciencias, Iguá 4225 esq. Mataojo C.P. 11400, Montevideo, Uruguay

Received February 26, 2016, in final form June 09, 2016; Published online June 15, 2016

We consider a two parameter family of instantons, which is studied in [Sadun L., Comm. Math. Phys. 163 (1994), 257-291], invariant under the irreducible action of ${\rm SU}_2$ on $S^4$, but which are not globally defined. We will see that these instantons produce solutions to a one parameter family of Painlevé VI equations ($\text{P}_{\text{VI}}$) and we will give an explicit expression of the map between instantons and solutions to $\text{P}_{\text{VI}}$. The solutions are algebraic only for that values of the parameters which correspond to the instantons that can be extended to all of $S^4$. This work is a generalization of [Muñiz Manasliski R., Contemp. Math., Vol. 434, Amer. Math. Soc., Providence, RI, 2007, 215-222] and [Muñiz Manasliski R., J. Geom. Phys. 59 (2009), 1036-1047, arXiv:1602.07221], where instantons without singularities are studied.

Key words: twistor theory; Yang-Mills instantons; isomonodromic deformations.

pdf (345 kb)   tex (19 kb)


  1. Boalch P., From Klein to Painlevé via Fourier, Laplace and Jimbo, Proc. London Math. Soc. 90 (2005), 167-208, math.AG/0308221.
  2. Boalch P., Six results on Painlevé VI, in Théories asymptotiques et équations de Painlevé, Sémin. Congr., Vol. 14, Soc. Math. France, Paris, 2006, 1-20, math.AG/0503043.
  3. Bor G., Yang-Mills fields which are not self-dual, Comm. Math. Phys. 145 (1992), 393-410.
  4. Bor G., Montgomery R., ${\rm SO}(3)$ invariant Yang-Mills fields which are not self-dual, in Hamiltonian Systems, Transformation Groups and Spectral Transform Methods (Montreal, PQ, 1989), Université de Montréal, Montréal, QC, 1990, 191-198.
  5. Bor G., Segert J., Symmetric instantons and the ADHM construction, Comm. Math. Phys. 183 (1997), 183-203.
  6. Chang L.N., Chang N.P., Instantons with fractional topological charge, Phys. Lett. B 72 (1977), 341-342.
  7. Dubrovin B., Mazzocco M., Monodromy of certain Painlevé-VI transcendents and reflection groups, Invent. Math. 141 (2000), 55-147, math.AG/9806056.
  8. Fuchs R., Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen, Math. Ann. 63 (1907), 301-321.
  9. Gamayun O., Iorgov N., Lisovyy O., Conformal field theory of Painlevé VI, J. High Energy Phys. 2012 (2012), no. 10, 038, 25 pages, arXiv:1207.0787.
  10. Hitchin N.J., Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differential Geom. 42 (1995), 30-112.
  11. Hitchin N.J., A lecture on the octahedron, Bull. London Math. Soc. 35 (2003), 577-600.
  12. Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407-448.
  13. Kronheimer P.B., Mrowka T.S., Gauge theory for embedded surfaces. I, Topology 32 (1993), 773-826.
  14. Lisovyy O., Tykhyy Y., Algebraic solutions of the sixth Painlevé equation, J. Geom. Phys. 85 (2014), 124-163, arXiv:0809.4873.
  15. Mahoux G., Introduction to the theory of isomonodromic deformations of linear ordinary differential equations with rational coefficients, in The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 35-76.
  16. Mason L.J., Woodhouse N.M.J., Self-duality and the Painlevé transcendents, Nonlinearity 6 (1993), 569-581.
  17. Mason L.J., Woodhouse N.M.J., Integrability, self-duality, and twistor theory, London Mathematical Society Monographs. New Series, Vol. 15, The Clarendon Press, Oxford University Press, New York, 1996, oxford Science Publications.
  18. Mazzocco M., Rational solutions of the Painlevé VI equation, J. Phys. A: Math. Gen. 34 (2001), 2281-2294.
  19. Muñiz Manasliski R., Painlevé VI equation from invariant instantons, in Geometric and Topological Methods for Quantum Field Theory, Contemp. Math., Vol. 434, Amer. Math. Soc., Providence, RI, 2007, 215-222.
  20. Muñiz Manasliski R., Isomonodromic deformations and ${\rm SU}_2$-invariant instantons on $S^4$, J. Geom. Phys. 59 (2009), 1036-1047, arXiv:1602.07221.
  21. Okamoto K., Studies on the Painlevé equations. I. Sixth Painlevé equation $P_{{\rm VI}}$, Ann. Mat. Pura Appl. 146 (1987), 337-381.
  22. Sadun L., A symmetric family of Yang-Mills fields, Comm. Math. Phys. 163 (1994), 257-291.
  23. Watanabe H., Birational canonical transformations and classical solutions of the sixth Painlevé equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), 379-425.
  24. Woodhouse N.M.J., Two twistor descriptions of the isomonodromy problem, J. Phys. A: Math. Gen. 39 (2006), 4087-4093, nlin.SI/0312060.

Previous article  Next article   Contents of Volume 12 (2016)