Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 12 (2016), 094, 12 pages      arXiv:1609.06439
Contribution to the Special Issue on Tensor Models, Formalism and Applications

Invitation to Random Tensors

Razvan Gurau
CPHT, Ecole Polytechnique, 91128 Palaiseau cedex, France

Received September 21, 2016; Published online September 23, 2016

This article is preface to the SIGMA special issue ''Tensor Models, Formalism and Applications'', The issue is a collection of eight excellent, up to date reviews on random tensor models. The reviews combine pedagogical introductions meant for a general audience with presentations of the most recent developments in the field. This preface aims to give a condensed panoramic overview of random tensors as the natural generalization of random matrices to higher dimensions.

Key words: random tensors.

pdf (439 kb)   tex (40 kb)


  1. Ambjørn J., Durhuus B., Jónsson T., Three-dimensional simplicial quantum gravity and generalized matrix models, Modern Phys. Lett. A 6 (1991), 1133-1146.
  2. Ambjørn J., Durhuus B., Jonsson T., Quantum geometry. A statistical field theory approach, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1997.
  3. Ambjørn J., Jurkiewicz J., Makeenko Yu.M., Multiloop correlators for two-dimensional quantum gravity, Phys. Lett. B 251 (1990), 517-524.
  4. Anderson G.W., Guionnet A., Zeitouni O., An introduction to random matrices, Cambridge Studies in Advanced Mathematics, Vol. 118, Cambridge University Press, Cambridge, 2010.
  5. Baratin A., Carrozza S., Oriti D., Ryan J., Smerlak M., Melonic phase transition in group field theory, Lett. Math. Phys. 104 (2014), 1003-1017, arXiv:1307.5026.
  6. Baratin A., Oriti D., Group field theory with noncommutative metric variables, Phys. Rev. Lett. 105 (2010), 221302, 4 pages, arXiv:1002.4723.
  7. Baratin A., Oriti D., Ten questions on group field theory (and their tentative answers, J. Phys. Conf. Ser. 360 (2012), 012002, 10 pages, arXiv:1112.3270.
  8. Ben Arous G., Guionnet A., Large deviations for Wigner's law and Voiculescu's non-commutative entropy, Probab. Theory Related Fields 108 (1997), 517-542.
  9. Ben Geloun J., Two- and four-loop $\beta$-functions of rank-4 renormalizable tensor field theories, Classical Quantum Gravity 29 (2012), 235011, 40 pages, arXiv:1205.5513.
  10. Ben Geloun J., Asymptotic freedom of rank 4 tensor group field theory, in Symmetries and Groups in Contemporary Physics, Nankai Ser. Pure Appl. Math. Theoret. Phys., Vol. 11, World Sci. Publ., Hackensack, NJ, 2013, 367-372, arXiv:1210.5490.
  11. Ben Geloun J., On the finite amplitudes for open graphs in Abelian dynamical colored Boulatov-Ooguri models, J. Phys. A: Math. Theor. 46 (2013), 402002, 12 pages, arXiv:1307.8299.
  12. Ben Geloun J., Renormalizable models in rank $d\geq 2$ tensorial group field theory, Comm. Math. Phys. 332 (2014), 117-188, arXiv:1306.1201.
  13. Ben Geloun J., Koslowski T.A., Nontrivial UV behavior of rank-4 tensor field models for quantum gravity, arXiv:1606.04044.
  14. Ben Geloun J., Livine E.R., Some classes of renormalizable tensor models, J. Math. Phys. 54 (2013), 082303, 25 pages, arXiv:1207.0416.
  15. Ben Geloun J., Magnen J., Rivasseau V., Bosonic colored group field theory, Eur. Phys. J. C Part. Fields 70 (2010), 1119-1130, arXiv:0911.1719.
  16. Ben Geloun J., Martini R., Oriti D., Functional renormalization group analysis of tensorial group field theories on $\mathbb{R}^d$, Phys. Rev. D 94 (2016), 024017, 45 pages, arXiv:1601.08211.
  17. Ben Geloun J., Ramgoolam S., Counting tensor model observables and branched covers of the 2-sphere, Ann. Inst. Henri Poincaré D 1 (2014), 77-138, arXiv:1307.6490.
  18. Ben Geloun J., Rivasseau V., A renormalizable 4-dimensional tensor field theory, Comm. Math. Phys. 318 (2013), 69-109, arXiv:1111.4997.
  19. Ben Geloun J., Samary D.O., 3D tensor field theory: renormalization and one-loop $\beta$-functions, Ann. Henri Poincaré 14 (2013), 1599-1642, arXiv:1201.0176.
  20. Ben Geloun J., Toriumi R., Parametric representation of rank $d$ tensorial group field theory: Abelian models with kinetic term $\sum_s\vert p_s\vert +\mu$, J. Math. Phys. 56 (2015), 093503, 53 pages, arXiv:1409.0398.
  21. Benedetti D., Ben Geloun J., Oriti D., Functional renormalisation group approach for tensorial group field theory: a rank-3 model, J. High Energy Phys. 2015 (2015), no. 3, 084, 40 pages, arXiv:1411.3180.
  22. Benedetti D., Gurau R., Phase transition in dually weighted colored tensor models, Nuclear Phys. B 855 (2012), 420-437, arXiv:1108.5389.
  23. Benedetti D., Lahoche V., Functional renormalization group approach for tensorial group field theory: a rank-6 model with closure constraint, Classical Quantum Gravity 33 (2016), 095003, 35 pages, arXiv:1508.0638.
  24. Bonzom V., Multi-critical tensor models and hard dimers on spherical random lattices, Phys. Lett. A 377 (2013), 501-506, arXiv:1201.1931.
  25. Bonzom V., New $1/N$ expansions in random tensor models, J. High Energy Phys. 2013 (2013), no. 6, 062, 25 pages, arXiv:1211.1657.
  26. Bonzom V., Revisiting random tensor models at large $N$ via the Schwinger-Dyson equations, J. High Energy Phys. 2013 (2013), no. 3, 160, 25 pages, arXiv:1208.6216.
  27. Bonzom V., Combes F., Tensor models from the viewpoint of matrix models: the cases of loop models on random surfaces and of the Gaussian distribution, Ann. Inst. Henri Poincaré D 2 (2015), 1-47, arXiv:1304.4152.
  28. Bonzom V., Erbin H., Coupling of hard dimers to dynamical lattices via random tensors, J. Stat. Mech. Theory Exp. 2012 (2012), P09009, 18 pages, arXiv:1204.3798.
  29. Bonzom V., Gurau R., Riello A., Rivasseau V., Critical behavior of colored tensor models in the large $N$ limit, Nuclear Phys. B 853 (2011), 174-195, arXiv:1105.3122.
  30. Bonzom V., Gurau R., Rivasseau V., The Ising model on random lattices in arbitrary dimensions, Phys. Lett. B 711 (2012), 88-96, arXiv:1108.6269.
  31. Bonzom V., Gurau R., Rivasseau V., Random tensor models in the large $N$ limit: uncoloring the colored tensor models, Phys. Rev. D 85 (2012), 084037, 12 pages, arXiv:1202.3637.
  32. Bonzom V., Gurau R., Ryan J.P., Tanasa A., The double scaling limit of random tensor models, J. High Energy Phys. 2014 (2014), no. 9, 051, 49 pages, arXiv:1404.7517.
  33. Boulatov D.V., A model of three-dimensional lattice gravity, Modern Phys. Lett. A 7 (1992), 1629-1646, hep-th/9202074.
  34. Boulatov D.V., Kazakov V.A., The Ising model on a random planar lattice: the structure of the phase transition and the exact critical exponents, Phys. Lett. B 186 (1987), 379-384.
  35. Brézin É., Douglas M.R., Kazakov V., Shenker S.H., The Ising model coupled to $2$D gravity. A nonperturbative analysis, Phys. Lett. B 237 (1990), 43-46.
  36. Brézin E., Itzykson C., Parisi G., Zuber J.B., Planar diagrams, Comm. Math. Phys. 59 (1978), 35-51.
  37. Brézin E., Kazakov V.A., Exactly solvable field theories of closed strings, Phys. Lett. B 236 (1990), 144-150.
  38. Carrozza S., Discrete renormalization group for ${\rm SU}(2)$ tensorial group field theory, Ann. Inst. Henri Poincaré D 2 (2015), 49-112, arXiv:1407.4615.
  39. Carrozza S., Group field theory in dimension $4-\varepsilon$, Phys. Rev. D 91 (2015), 065023, 10 pages, arXiv:1411.5385.
  40. Carrozza S., Oriti D., Bounding bubbles: the vertex representation of $3d$ group field theory and the suppression of pseudomanifolds, Phys. Rev. D 85 (2012), 044004, 22 pages, arXiv:1104.5158.
  41. Carrozza S., Oriti D., Bubbles and jackets: new scaling bounds in topological group field theories, J. High Energy Phys. 2012 (2012), no. 6, 092, 42 pages, arXiv:1203.5082.
  42. Carrozza S., Oriti D., Rivasseau V., Renormalization of a ${\rm SU}(2)$ tensorial group field theory in three dimensions, Comm. Math. Phys. 330 (2014), 581-637, arXiv:1303.6772.
  43. Carrozza S., Oriti D., Rivasseau V., Renormalization of tensorial group field theories: Abelian ${\rm U}(1)$ models in four dimensions, Comm. Math. Phys. 327 (2014), 603-641, arXiv:1207.6734.
  44. Chapuy G., Marcus M., Schaeffer G., A bijection for rooted maps on orientable surfaces, SIAM J. Discrete Math. 23 (2009), 1587-1611, arXiv:0712.3649.
  45. Cori R., Schaeffer G., Description trees and Tutte formulas, Theoret. Comput. Sci. 292 (2003), 165-183.
  46. Dartois S., Gurau R., Rivasseau V., Double scaling in tensor models with a quartic interaction, J. High Energy Phys. 2013 (2013), no. 9, 088, 33 pages, arXiv:1307.5281.
  47. Dartois S., Rivasseau V., Tanasa A., The $1/N$ expansion of multi-orientable random tensor models, Ann. Henri Poincaré 15 (2014), 965-984, arXiv:1301.1535.
  48. David F., Planar diagrams, two-dimensional lattice gravity and surface models, Nuclear Phys. B 257 (1985), 45-58.
  49. David F., Conformal field theories coupled to $2$-D gravity in the conformal gauge, Modern Phys. Lett. A 3 (1988), 1651-1656.
  50. David F., Simplicial quantum gravity and random lattices, in Gravitation and Quantizations (Les Houches, 1992), Editors J. Zinn-Justin, B. Julia, North-Holland, Amsterdam, 1995, 679-749, hep-th/9303127.
  51. Di Francesco P., Ginsparg P., Zinn-Justin J., $2$D gravity and random matrices, Phys. Rep. 254 (1995), 1-133, hep-th/9306153.
  52. Dijkgraaf R., Verlinde H., Verlinde E., Loop equations and Virasoro constraints in nonperturbative two-dimensional quantum gravity, Nuclear Phys. B 348 (1991), 435-456.
  53. Disertori M., Gurau R., Magnen J., Rivasseau V., Vanishing of beta function of non-commutative $\Phi_4^4$ theory to all orders, Phys. Lett. B 649 (2007), 95-102, hep-th/0612251.
  54. Distler J., Kawai H., Conformal field theory and $2$D quantum gravity, Nuclear Phys. B 321 (1989), 509-527.
  55. Douglas M.R., Shenker S.H., Strings in less than one dimension, Nuclear Phys. B 335 (1990), 635-654.
  56. Duplantier B., Conformal random geometry, in Mathematical Statistical Physics, Elsevier B.V., Amsterdam, 2006, 101-217, math-ph/0608053.
  57. Eynard B., Topological expansion for the 1-Hermitian matrix model correlation functions, J. High Energy Phys. 2004 (2004), no. 11, 031, 35 pages, hep-th/0407261.
  58. Eynard B., Another algebraic variational principle for the spectral curve of matrix models, arXiv:1407.8324.
  59. Eynard B., Orantin N., Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007), 347-452, math-ph/0702045.
  60. Fukuma M., Kawai H., Nakayama R., Continuum Schwinger-Dyson equations and universal structures in two-dimensional quantum gravity, Internat. J. Modern Phys. A 6 (1991), 1385-1406.
  61. Fusy E., Tanasa A., Asymptotic expansion of the multi-orientable random tensor model, Electron. J. Combin. 22 (2015), 1.52, 30 pages, arXiv:1408.5725.
  62. Gielen S., Identifying cosmological perturbations in group field theory condensates, J. High Energy Phys. 2015 (2015), no. 8, 010, 23 pages, arXiv:1505.0747.
  63. Gielen S., Perturbing a quantum gravity condensate, Phys. Rev. D 91 (2015), 043526, 11 pages, arXiv:1411.1077.
  64. Gielen S., Emergence of a low spin phase in group field theory condensates, arXiv:1604.06023.
  65. Gielen S., Oriti D., Quantum cosmology from quantum gravity condensates: cosmological variables and lattice-refined dynamics, New J. Phys. 16 (2014), 123004, 11 pages, arXiv:1407.8167.
  66. Gielen S., Oriti D., Sindoni L., Cosmology from group field theory formalism for quantum gravity, Phys. Rev. Lett. 111 (2013), 031301, 4 pages, arXiv:1303.3576.
  67. Gielen S., Oriti D., Sindoni L., Homogeneous cosmologies as group field theory condensates, J. High Energy Phys. 2014 (2014), no. 6, 013, 69 pages, arXiv:1311.1238.
  68. Glashow S.L., Partial-symmetries of weak interactions, Nuclear Phys. 22 (1961), 579-588.
  69. Glimm J., Jaffe A., Quantum physics. A functional integral point of view, 2nd ed., Springer-Verlag, New York, 1987.
  70. Goroff M.H., Sagnotti A., The ultraviolet behavior of Einstein gravity, Nuclear Phys. B 266 (1986), 709-736.
  71. Gross D.J., Migdal A.A., Nonperturbative two-dimensional quantum gravity, Phys. Rev. Lett. 64 (1990), 127-130.
  72. Gross D.J., Wilczek F., Asymptotically free gauge theories. I, Phys. Rev. D 8 (1973), 3633-3652.
  73. Gross D.J., Wilczek F., Asymptotically free gauge theories. II, Phys. Rev. D 9 (1974), 980-993.
  74. Gross D.J., Wilczek F., Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett. 30 (1973), 1343-1346.
  75. Gross M., Tensor models and simplicial quantum gravity in >2-D, Nuclear Phys. B Proc. Suppl. 25A (1992), 144-149.
  76. Grosse H., Wulkenhaar R., Renormalisation of $\phi^4$-theory on noncommutative ${\mathbb R}^4$ in the matrix base, Comm. Math. Phys. 256 (2005), 305-374, hep-th/0401128.
  77. Grosse H., Wulkenhaar R., Progress in solving a noncommutative quantum field theory in four dimensions, arXiv:0909.1389.
  78. Grosse H., Wulkenhaar R., Solvable limits of a $4D$ noncommutative QFT, arXiv:1306.2816.
  79. Grosse H., Wulkenhaar R., Construction of the $\Phi^4_4$-quantum field theory on noncommutative Moyal space, RIMS Kōkyūroku 1904 (2013), 67-104, arXiv:1402.1041.
  80. Grosse H., Wulkenhaar R., Solvable 4D noncommutative QFT: phase transitions and quest for reflection positivity, arXiv:1406.7755.
  81. Guionnet A., Zeitouni O., Concentration of the spectral measure for large matrices, Electron. Comm. Probab. 5 (2000), 119-136.
  82. Gurau R., Lost in translation: topological singularities in group field theory, Classical Quantum Gravity 27 (2010), 235023, 20 pages, arXiv:1006.0714.
  83. Gurau R., Topological graph polynomials in colored group field theory, Ann. Henri Poincaré 11 (2010), 565-584, arXiv:0911.1945.
  84. Gurau R., The $1/N$ expansion of colored tensor models, Ann. Henri Poincaré 12 (2011), 829-847, arXiv:1011.2726.
  85. Gurau R., Colored group field theory, Comm. Math. Phys. 304 (2011), 69-93, arXiv:0907.2582.
  86. Gurau R., Double scaling limit in arbitrary dimensions: a toy model, Phys. Rev. D 84 (2011), 124051, 11 pages, arXiv:1110.2460.
  87. Gurau R., A generalization of the Virasoro algebra to arbitrary dimensions, Nuclear Phys. B 852 (2011), 592-614, arXiv:1105.6072.
  88. Gurau R., The complete $1/N$ expansion of colored tensor models in arbitrary dimension, Ann. Henri Poincaré 13 (2012), 399-423, arXiv:1102.5759.
  89. Gurau R., The Schwinger-Dyson equations and the algebra of constraints of random tensor models at all orders, Nuclear Phys. B 865 (2012), 133-147, arXiv:1203.4965.
  90. Gurau R., The $1/N$ expansion of tensor models beyond perturbation theory, Comm. Math. Phys. 330 (2014), 973-1019, arXiv:1304.2666.
  91. Gurau R., Universality for random tensors, Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014), 1474-1525, arXiv:1111.0519.
  92. Gurau R., Random tensors, Oxford University Press, Oxford, 2016.
  93. Gurau R., Magnen J., Rivasseau V., Vignes-Tourneret F., Renormalization of non-commutative $\Phi^4_4$ field theory in $x$ space, Comm. Math. Phys. 267 (2006), 515-542, hep-th/0512271.
  94. Gurau R., Rivasseau V., The $1/N$ expansion of colored tensor models in arbitrary dimension, Europhys. Lett. 95 (2011), 50004, 5 pages, arXiv:1101.4182.
  95. Gurau R., Rivasseau V., The multiscale loop vertex expansion, Ann. Henri Poincaré 16 (2015), 1869-1897, arXiv:1312.7226.
  96. Gurau R., Ryan J.P., Colored tensor models - a review, SIGMA 8 (2012), 020, 78 pages, arXiv:1109.4812.
  97. Gurau R., Ryan J.P., Melons are branched polymers, Ann. Henri Poincaré 15 (2014), 2085-2131, arXiv:1302.4386.
  98. Gurau R., Schaeffer G., Regular colored graphs of positive degree, arXiv:1307.5279.
  99. Gurau R., Tanasa A., Youmans D.R., The double scaling limit of the multi-orientable tensor model, Europhys. Lett. 111 (2015), 21002, 6 pages, arXiv:1505.00586.
  100. Gurau R.G., Krajewski T., Analyticity results for the cumulants in a random matrix model, Ann. Inst. Henri Poincaré D 2 (2015), 169-228, arXiv:1409.1705.
  101. Kazakov V.A., Bilocal regularization of models of random surfaces, Phys. Lett. B 150 (1985), 282-284.
  102. Kazakov V.A., Ising model on a dynamical planar random lattice: exact solution, Phys. Lett. A 119 (1986), 140-144.
  103. Kazakov V.A., The appearance of matter fields from quantum fluctuations of $2$D-gravity, Modern Phys. Lett. A 4 (1989), 2125-2139.
  104. Kegeles A., Oriti D., Continuous point symmetries in group field theories, arXiv:1608.00296.
  105. Knizhnik V.G., Polyakov A.M., Zamolodchikov A.B., Fractal structure of $2$D-quantum gravity, Modern Phys. Lett. A 3 (1988), 819-826.
  106. Krajewski T., Schwinger-Dyson equations in group field theories of quantum gravity, in Symmetries and Groups in Contemporary Physics, Nankai Ser. Pure Appl. Math. Theoret. Phys., Vol. 11, World Sci. Publ., Hackensack, NJ, 2013, 373-378, arXiv:1211.1244.
  107. Lahoche V., Oriti D., Renormalization of a tensorial field theory on the homogeneous space ${\rm SU}(2)/{\rm U}(1)$, arXiv:1506.08393.
  108. Lahoche V., Samary D.O., Functional renormalisation group for the $U(1)-T_5^6$ TGFT with closure constraint, arXiv:1608.00379.
  109. Le Gall J.F., The topological structure of scaling limits of large planar maps, Invent. Math. 169 (2007), 621-670, math.PR/0607567.
  110. Le Gall J.F., Geodesics in large planar maps and in the Brownian map, Acta Math. 205 (2010), 287-360, arXiv:0804.3012.
  111. Le Gall J.F., Uniqueness and universality of the Brownian map, Ann. Probab. 41 (2013), 2880-2960, arXiv:1105.4842.
  112. Magnen J., Rivasseau V., Constructive $\phi^4$ field theory without tears, Ann. Henri Poincaré 9 (2008), 403-424, arXiv:0706.2457.
  113. Makeenko Yu., Loop equations and Virasoro constraints in matrix models, hep-th/9112058.
  114. Marchal O., Eynard B., Bergère M., The sine-law gap probability, Painlevé 5, and asymptotic expansion by the topological recursion, Random Matrices Theory Appl. 3 (2014), 1450013, 41 pages, arXiv:1311.3217.
  115. Mehta M.L., Random matrices, Pure and Applied Mathematics (Amsterdam), Vol. 142, 3rd ed., Elsevier/Academic Press, Amsterdam, 2004.
  116. Ooguri H., Topological lattice models in four dimensions, Modern Phys. Lett. A 7 (1992), 2799-2810, hep-th/9205090.
  117. Oriti D., The microscopic dynamics of quantum space as a group field theory, in Foundations of Space and Time, Cambridge University Press, Cambridge, 2012, 257-320, arXiv:1110.5606.
  118. Oriti D., Group field theory and loop quantum gravity, arXiv:1408.7112.
  119. Oriti D., Pranzetti D., Ryan J.P., Sindoni L., Generalized quantum gravity condensates for homogeneous geometries and cosmology, Classical Quantum Gravity 32 (2015), 235016, 40 pages, arXiv:1501.0093.
  120. Oriti D., Pranzetti D., Sindoni L., Horizon entropy from quantum gravity condensates, Phys. Rev. Lett. 116 (2016), 211301, 6 pages, arXiv:1510.06991.
  121. Oriti D., Ryan J.P., Thürigen J., Group field theories for all loop quantum gravity, New J. Phys. 17 (2015), 023042, 46 pages, arXiv:1409.3150.
  122. Oriti D., Sindoni L., Wilson-Ewing E., Bouncing cosmologies from quantum gravity condensates, arXiv:1602.08271.
  123. Oriti D., Sindoni L., Wilson-Ewing E., Emergent Friedmann dynamics with a quantum bounce from quantum gravity condensates, arXiv:1602.05881.
  124. Politzer H.D., Reliable perturbative results for strong interactions?, Phys. Rev. Lett. 30 (1973), 1346-1349.
  125. Rivasseau V., Constructive matrix theory, J. High Energy Phys. 2007 (2007), no. 9, 008, 13 pages, arXiv:0706.1224.
  126. Rivasseau V., Constructive field theory in zero dimension, Adv. Math. Phys. 2009 (2009), 180159, 12 pages, arXiv:0906.3524.
  127. Rivasseau V., Quantum gravity and renormalization: the tensor track, AIP Conf. Proc. 1444 (2012), 18-29, arXiv:1112.5104.
  128. Rivasseau V., The tensor track: an update, in Symmetries and Groups in Contemporary Physics, Nankai Ser. Pure Appl. Math. Theoret. Phys., Vol. 11, World Sci. Publ., Hackensack, NJ, 2013, 63-74, arXiv:1209.5284.
  129. Rivasseau V., The tensor theory space, Fortschr. Phys. 62 (2014), 835-840, arXiv:1407.0284.
  130. Rivasseau V., The tensor track, III, Fortschr. Phys. 62 (2014), 81-107, arXiv:1311.1461.
  131. Ryan J.P., Tensor models and embedded Riemann surfaces, Phys. Rev. D 85 (2012), 024010, 9 pages, arXiv:1104.5471.
  132. Salam A., Weak and electromagnetic interactions, in Elementary Particle Theory, Editor N. Svartholm, Wiley, New York, Almqvist and Wiksell, Stockholm, 1968, 367-377.
  133. Samary D.O., Beta functions of ${\rm U}(1)^d$ gauge invariant just renormalizable tensor models, Phys. Rev. D 88 (2013), 105003, 15 pages, arXiv:1303.7256.
  134. Samary D.O., Closed equations of the two-point functions for tensorial group field theory, Classical Quantum Gravity 31 (2014), 185005, 29 pages, arXiv:1401.2096.
  135. Samary D.O., Vignes-Tourneret F., Just renormalizable TGFT's on ${\rm U}(1)^d$ with gauge invariance, Comm. Math. Phys. 329 (2014), 545-578, arXiv:1211.2618.
  136. Sasakura N., Tensor model for gravity and orientability of manifold, Modern Phys. Lett. A 6 (1991), 2613-2623.
  137. Sasakura N., Super tensor models, super fuzzy spaces and super $n$-ary transformations, Internat. J. Modern Phys. A 26 (2011), 4203-4216, arXiv:1106.0379.
  138. Sasakura N., Tensor models and hierarchy of $n$-ary algebras, Internat. J. Modern Phys. A 26 (2011), 3249-3258, arXiv:1104.5312.
  139. Schaeffer G., Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees, Electron. J. Combin. 4 (1997), 20, 14 pages.
  140. Sindoni L., Effective equations for GFT condensates from fidelity, arXiv:1408.3095.
  141. 't Hooft G., A planar diagram theory for strong interactions, Nuclear Phys. B 72 (1974), 461-473.
  142. 't Hooft G., Veltman M., Regularization and renormalization of gauge fields, Nuclear Phys. B 44 (1972), 189-213.
  143. 't Hooft G., Veltman M., One-loop divergencies in the theory of gravitation, Ann. Inst. H. Poincaré Sect. A 20 (1974), 69-94.
  144. Tanasa A., Multi-orientable group field theory, J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694.
  145. Weinberg S., A model of leptons, Phys. Rev. Lett. 19 (1967), 1264-1266.
  146. Wigner E.P., Characteristic vectors of bordered matrices with infinite dimensions, Ann. of Math. 62 (1955), 548-564.
  147. Wishart J., The generalised product moment distribution in samples from a normal multivariate population, Biometrika 20A (1928), 32-52.

Previous article  Next article   Contents of Volume 12 (2016)