Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 13 (2017), 047, 17 pages      arXiv:1701.03057
Contribution to the Special Issue on Combinatorics of Moduli Spaces: Integrability, Cohomology, Quantisation, and Beyond

Check-Operators and Quantum Spectral Curves

Andrei Mironov abcd and Alexei Morozov bcd
a) Lebedev Physics Institute, Moscow, 119991, Russia
b) ITEP, Moscow, 117218, Russia
c) Institute for Information Transmission Problems, Moscow, 127994, Russia
d) National Research Nuclear University MEPhI, Moscow, 115409, Russia

Received January 29, 2017, in final form June 19, 2017; Published online June 26, 2017

We review the basic properties of effective actions of families of theories (i.e., the actions depending on additional non-perturbative moduli along with perturbative couplings), and their description in terms of operators (called check-operators), which act on the moduli space. It is this approach that led to constructing the (quantum) spectral curves and what is now nicknamed the EO/AMM topological recursion. We explain how the non-commutative algebra of check-operators is related to the modular kernels and how symplectic (special) geometry emerges from it in the classical (Seiberg-Witten) limit, where the quantum integrable structures turn into the well studied classical integrability. As time goes, these results turn applicable to more and more theories of physical importance, supporting the old idea that many universality classes of low-energy effective theories contain matrix model representatives.

Key words: matrix models; check-operators; Seiberg-Witten theory; modular kernel in CFT.

pdf (510 kb)   tex (34 kb)


  1. Aganagic M., Klemm A., Mariño M., Vafa C., The topological vertex, Comm. Math. Phys. 254 (2005), 425-478, hep-th/0305132.
  2. Alday L.F., Gaiotto D., Tachikawa Y., Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010), 167-197, arXiv:0906.3219.
  3. Alexandrov A., Mironov A., Morozov A., Solving Virasoro constraints in matrix models, Fortschr. Phys. 53 (2005), 512-521, hep-th/0412205.
  4. Alexandrov A., Mironov A., Morozov A., Unified description of correlators in non-Gaussian phases of Hermitian matrix model, Internat. J. Modern Phys. A 21 (2006), 2481-2517, hep-th/0412099.
  5. Alexandrov A., Mironov A., Morozov A., Instantons and merons in matrix models, Phys. D 235 (2007), 126-167, hep-th/0608228.
  6. Alexandrov A., Mironov A., Morozov A., BGWM as second constituent of complex matrix model, J. High Energy Phys. 2009 (2009), no. 12, 053, 49 pages, arXiv:0906.3305.
  7. Alexandrov A., Mironov A., Morozov A., Putrov P., Partition functions of matrix models as the first special functions of string theory. II. Kontsevich model, Internat. J. Modern Phys. A 24 (2009), 4939-4998, arXiv:0811.2825.
  8. Alexandrov A., Morozov A., Mironov A., Partition functions of matrix models: first special functions of string theory, Internat. J. Modern Phys. A 19 (2004), 4127-4163, hep-th/0310113.
  9. Alvarez-Gaumé L., Random surfaces, statistical mechanics and string theory, Helv. Phys. Acta 64 (1991), 359-526.
  10. Ambjørn J., Makeenko Yu.M., Properties of loop equations for the Hermitian matrix model and for two-dimensional quantum gravity, Modern Phys. Lett. A 5 (1990), 1753-1763.
  11. Awata H., Kanno H., Instanton counting, Macdonald function and the moduli space of D-branes, J. High Energy Phys. 2005 (2005), no. 5, 039, 26 pages, hep-th/0502061.
  12. Awata H., Kanno H., Refined BPS state counting from Nekrasov's formula and Macdonald functions, Internat. J. Modern Phys. A 24 (2009), 2253-2306, arXiv:0805.0191.
  13. Awata H., Kanno H., Changing the preferred direction of the refined topological vertex, J. Geom. Phys. 64 (2013), 91-110, arXiv:0903.5383.
  14. Awata H., Kanno H., Matsumoto T., Mironov A., Morozov A., Morozov A., Ohkubo Y., Zenkevich Y., Explicit examples of DIM constraints for network matrix models, J. High Energy Phys. 2016 (2016), no. 7, 103, 67 pages, arXiv:1604.08366.
  15. Awata H., Matsuo Y., Odake S., Shiraishi J., Collective field theory, Calogero-Sutherland model and generalized matrix models, Phys. Lett. B 347 (1995), 49-55, hep-th/9411053.
  16. Awata H., Matsuo Y., Odake S., Shiraishi J., Excited states of the Calogero-Sutherland model and singular vectors of the $W_N$ algebra, Nuclear Phys. B 449 (1995), 347-374, hep-th/9503043.
  17. Awata H., Matsuo Y., Odake S., Shiraishi J., A Note on Calogero-Sutherland model, $W_n$ singular vectors and generalized matrix models, Soryushiron Kenkyu 91 (1995), A69-A75, hep-th/9503028.
  18. Barnes E.W., The genesis of the double gamma functions, Proc. London Math. Soc. S1-31 (1899), 358-381.
  19. Barnes E.W., The theory of the double gamma function, Philos. Trans. R. Soc. Lond. Ser. A 96 (1901), 265-387.
  20. Barnes E.W., On the theory of multiple gamma functions, Trans. Cambridge Philos. Soc. 19 (1904), 374-425.
  21. Belavin A.A., Polyakov A.M., Zamolodchikov A.B., Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), 333-380.
  22. Chekhov L., Marshakov A., Mironov A., Vasiliev D., DV and WDVV, Phys. Lett. B 562 (2003), 323-338, hep-th/0301071.
  23. Chekhov L., Marshakov A., Mironov A., Vasiliev D., Complex geometry of matrix models, Proc. Steklov Inst. Math. 251 (2005), 265-306, hep-th/0506075.
  24. Chekhov L., Mironov A., Matrix models vs. Seiberg-Witten/Whitham theories, Phys. Lett. B 552 (2003), 293-302, hep-th/0209085.
  25. David F., Loop equations and nonperturbative effects in two-dimensional quantum gravity, Modern Phys. Lett. A 5 (1990), 1019-1029.
  26. Di Francesco P., Mathieu P., Sénéchal D., Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997.
  27. Dijkgraaf R., Vafa C., Matrix models, topological strings, and supersymmetric gauge theories, Nuclear Phys. B 644 (2002), 3-20, hep-th/0206255.
  28. Dijkgraaf R., Vafa C., On geometry and matrix models, Nuclear Phys. B 644 (2002), 21-39, hep-th/0207106.
  29. Dijkgraaf R., Vafa C., A perturbative window into non-perturbative physics, hep-th/0208048.
  30. Dijkgraaf R., Vafa C., Toda theories, matrix models, topological strings, and $N=2$ gauge systems, arXiv:0909.2453.
  31. Dijkgraaf R., Verlinde H., Verlinde E., Loop equations and Virasoro constraints in nonperturbative two-dimensional quantum gravity, Nuclear Phys. B 348 (1991), 435-456.
  32. Dijkgraaf R., Verlinde H., Verlinde E., Topological strings in $d$<$1$, Nuclear Phys. B 352 (1991), 59-86.
  33. Donagi R., Witten E., Supersymmetric Yang-Mills theory and integrable systems, Nuclear Phys. B 460 (1996), 299-334, hep-th/9510101.
  34. Dotsenko V.S., Fateev V.A., Conformal algebra and multipoint correlation functions in $2$D statistical models, Nuclear Phys. B 240 (1984), 312-348.
  35. Dubrovin B., Geometry of $2$D topological field theories, in Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 120-348, hep-th/9407018.
  36. Dyson F.J., Statistical theory of the energy levels of complex systems. I, J. Math. Phys. 3 (1962), 140-156.
  37. Eguchi T., Kanno H., Topological strings and Nekrasov's formulas, J. High Energy Phys. 2003 (2003), no. 12, 006, 30 pages, hep-th/0310235.
  38. Eguchi T., Maruyoshi K., Penner type matrix model and Seiberg-Witten theory, J. High Energy Phys. 2010 (2010), no. 2, 022, 21 pages, arXiv:0911.4797.
  39. Eguchi T., Maruyoshi K., Seiberg-Witten theory, matrix model and AGT relation, J. High Energy Phys. 2010 (2010), no. 7, 081, 18 pages, arXiv:1006.0828.
  40. Eynard B., Orantin N., Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007), 347-452, math-ph/0702045.
  41. Flume R., Poghossian R., An algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential, Internat. J. Modern Phys. A 18 (2003), 2541-2563, hep-th/0208176.
  42. Fukuma M., Kawai H., Nakayama R., Continuum Schwinger-Dyson equations and universal structures in two-dimensional quantum gravity, Internat. J. Modern Phys. A 6 (1991), 1385-1406.
  43. Galakhov D., Mironov A., Morozov A., S-duality as a $\beta$-deformed Fourier transform, J. High Energy Phys. 2012 (2012), no. 8, 067, 28 pages, arXiv:1205.4998.
  44. Galakhov D., Mironov A., Morozov A., $S$-duality and modular transformation as a non-perturbative deformation of the ordinary $pq$-duality, J. High Energy Phys. 2014 (2014), no. 6, 050, 24 pages, arXiv:1311.7069.
  45. Galakhov D., Mironov A., Morozov A., Wall crossing invariants: from quantum mechanics to knots, J. Exp. Theor. Phys. 120 (2015), 549-577, arXiv:1410.8482.
  46. Galakhov D., Mironov A., Morozov A., ${\rm SU}(2)/{\rm SL}(2)$ knot invariants and Kontsevich-Soibelman monodromies, Theoret. and Math. Phys. 187 (2016), 678-694, arXiv:1510.05366.
  47. Gerasimov A., Marshakov A., Mironov A., Morozov A., Orlov A., Matrix models of two-dimensional gravity and Toda theory, Nuclear Phys. B 357 (1991), 565-618.
  48. Gorsky A., Krichever I.M., Marshakov A., Mironov A., Morozov A., Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355 (1995), 466-474, hep-th/9505035.
  49. Gorsky A., Marshakov A., Mironov A., Morozov A., RG equations from Whitham hierarchy, Nuclear Phys. B 527 (1998), 690-716, hep-th/9802004.
  50. Gorsky A., Mironov A., Integrable many-body systems and gauge theories, hep-th/0011197.
  51. Hikami K., Hyperbolic structure arising from a knot invariant, Internat. J. Modern Phys. A 16 (2001), 3309-3333, math-ph/0105039.
  52. Hikami K., Generalized volume conjecture and the $A$-polynomials: the Neumann-Zagier potential function as a classical limit of the partition function, J. Geom. Phys. 57 (2007), 1895-1940, math.QA/0604094.
  53. Hikami K., Inoue R., Braiding operator via quantum cluster algebra, J. Phys. A: Math. Theor. 47 (2014), 474006, 21 pages, arXiv:1404.2009.
  54. Hikami K., Inoue R., Cluster algebra and complex volume of once-punctured torus bundles and 2-bridge links, J. Knot Theory Ramifications 23 (2014), 1450006, 33 pages, arXiv:1212.6042.
  55. Hikami K., Inoue R., Braids, complex volume and cluster algebras, Algebr. Geom. Topol. 15 (2015), 2175-2194, arXiv:1304.4776.
  56. Iqbal A., All genus topological string amplitudes and 5-brane webs as Feynman diagrams, hep-th/0207114.
  57. Iqbal A., Kashani-Poor A.K., The vertex on a strip, Adv. Theor. Math. Phys. 10 (2006), 317-343, hep-th/0410174.
  58. Iqbal A., Kozçaz C., Vafa C., The refined topological vertex, J. High Energy Phys. 2009 (2009), no. 10, 069, 58 pages, hep-th/0701156.
  59. Iqbal A., Vafa C., Nekrasov N., Okounkov A., Quantum foam and topological strings, J. High Energy Phys. 2008 (2008), no. 4, 011, 47 pages, hep-th/0312022.
  60. Itoyama H., Maruyoshi K., Oota T., Notes on the quiver matrix model and 2d-4d conformal connection, Progr. Theoret. Phys. 123 (2010), 957-987, arXiv:0911.4244.
  61. Itoyama H., Matsuo Y., Noncritical Virasoro algebra of the $d$<$1$ matrix model and the quantized string field, Phys. Lett. B 255 (1991), 202-208.
  62. Jimbo M., Miwa T., Quantum KZ equation with $|q|=1$ and correlation functions of the $XXZ$ model in the gapless regime, J. Phys. A: Math. Gen. 29 (1996), 2923-2958, hep-th/9601135.
  63. Kharchev S., Lebedev D., Semenov-Tian-Shansky M., Unitary representations of $U_q({\mathfrak{sl}}(2,{\mathbb R}))$, the modular double and the multiparticle $q$-deformed Toda chains, Comm. Math. Phys. 225 (2002), 573-609, hep-th/0102180.
  64. Kharchev S., Marshakov A., Mironov A., Morozov A., Generalized Kontsevich model versus Toda hierarchy and discrete matrix models, Nuclear Phys. B 397 (1993), 339-378, hep-th/9203043.
  65. Kharchev S., Marshakov A., Mironov A., Morozov A., Pakuliak S., Conformal matrix models as an alternative to conventional multi-matrix models, Nuclear Phys. B 404 (1993), 717-750, hep-th/9208044.
  66. Kharchev S., Marshakov A., Mironov A., Morozov A., Zabrodin A., Towards unified theory of $2$d gravity, Nuclear Phys. B 380 (1992), 181-240, hep-th/9201013.
  67. Kharchev S., Marshakov A., Mironov A., Morozov A., Zabrodin A., Unification of all string models with $c<1$, Phys. Lett. B 275 (1992), 311-314, hep-th/9111037.
  68. Kharchev S., Marshakov A., Mironov A., Orlov A., Zabrodin A., Matrix models among integrable theories: forced hierarchies and operator formalism, Nuclear Phys. B 366 (1991), 569-601.
  69. Kharchev S., Mironov A., Integrable structures of unitary matrix models, Internat. J. Modern Phys. A 7 (1992), 4803-4824.
  70. Kimura T., Pestun V., Quiver W-algebras, arXiv:1512.08533.
  71. Krichever I.M., Methods of algebraic geometry in the theory of non-linear equations, Russian Math. Surveys 32 (1977), no. 6, 185-213.
  72. Krichever I.M., The $\tau$-function of the universal Whitham hierarchy, matrix models and topological field theories, Comm. Pure Appl. Math. 47 (1994), 437-475, hep-th/9205110.
  73. Kurokawa N., Multiple sine functions and Selberg zeta functions, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), 61-64.
  74. Kurokawa N., Gamma factors and Plancherel measures, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), 256-260.
  75. Kurokawa N., Multiple zeta functions: an example, in Zeta Functions in Geometry (Tokyo, 1990), Adv. Stud. Pure Math., Vol. 21, Kinokuniya, Tokyo, 1992, 219-226.
  76. Makeenko Yu., Marshakov A., Mironov A., Morozov A., Continuum versus discrete Virasoro in one-matrix models, Nuclear Phys. B 356 (1991), 574-628.
  77. Marshakov A., Mironov A., Morozov A., Generalized matrix models as conformal field theories. Discrete case, Phys. Lett. B 265 (1991), 99-107.
  78. Marshakov A., Mironov A., Morozov A., WDVV-like equations in ${\mathcal N}=2$ SUSY Yang-Mills theory, Phys. Lett. B 389 (1996), 43-52, hep-th/9607109.
  79. Marshakov A., Mironov A., Morozov A., WDVV equations from algebra of forms, Modern Phys. Lett. A 12 (1997), 773-787, hep-th/9701014.
  80. Marshakov A., Mironov A., Morozov A., More evidence for the WDVV equations in ${\mathcal N}=2$ SUSY Yang-Mills theories, Internat. J. Modern Phys. A 15 (2000), 1157-1206, hep-th/9701123.
  81. Marshakov A., Mironov A., Morosov A., On AGT relations with surface operator insertion and a stationary limit of beta-ensembles, J. Geom. Phys. 61 (2011), 1203-1222, arXiv:1011.4491.
  82. Martinec E.J., Integrable structures in supersymmetric gauge and string theory, Phys. Lett. B 367 (1996), 91-96, hep-th/9510204.
  83. Martinec E.J., Warner N.P., Integrable systems and supersymmetric gauge theory, Nuclear Phys. B 459 (1996), 97-112, hep-th/9511052.
  84. Mironov A., $2$D gravity and matrix models. I. $2$D gravity, Internat. J. Modern Phys. A 9 (1994), 4355-4405, hep-th/9312212.
  85. Mironov A., Quantum deformations of $\tau$-functions, bilinear identities and representation theory, hep-th/9409190.
  86. Mironov A., WDVV equations and Seiberg-Witten theory, in Integrability: the Seiberg-Witten and Whitham Equations (Edinburgh, 1998), Editors H.W. Braden, I.M. Krichever, Gordon and Breach, Amsterdam, 2000, 103-123, hep-th/9903088.
  87. Mironov A., Matrix models of two-dimensional gravity, Phys. Part. Nuclei 33 (2002), 1051-1145.
  88. Mironov A., Matrix models and matrix integrals, Theoret. and Math. Phys. 146 (2006), 63-72, hep-th/0506158.
  89. Mironov A., Morosov A., Nekrasov functions and exact Bohr-Sommerfeld integrals, J. High Energy Phys. 2010 (2010), no. 4, 040, 15 pages, arXiv:0910.5670.
  90. Mironov A., Morosov A., Shakirov S., Brezin-Gross-Witten model as ''pure gauge'' limit of Selberg integrals, J. High Energy Phys. 2011 (2011), no. 3, 102, 25 pages, arXiv:1011.3481.
  91. Mironov A., Morozov A., On the origin of Virasoro constraints in matrix models: Lagrangian approach, Phys. Lett. B 252 (1990), 47-52.
  92. Mironov A., Morozov A., Nekrasov functions from exact Bohr-Sommerfeld periods: the case of ${\rm SU}(N)$, J. Phys. A: Math. Theor. 43 (2010), 195401, 11 pages, arXiv:0911.2396.
  93. Mironov A., Morozov A., On AGT relation in the case of ${\rm U}(3)$, Nuclear Phys. B 825 (2010), 1-37, arXiv:0908.2569.
  94. Mironov A., Morozov A., Morozov A., Conformal blocks and generalized Selberg integrals, Nuclear Phys. B 843 (2011), 534-557, arXiv:1003.5752.
  95. Mironov A., Morozov A., Shakirov S., Conformal blocks as Dotsenko-Fateev integral discriminants, Internat. J. Modern Phys. A 25 (2010), 3173-3207, arXiv:1001.0563.
  96. Mironov A., Morozov A., Shakirov S., Matrix model conjecture for exact BS periods and Nekrasov functions, J. High Energy Phys. 2010 (2010), no. 2, 030, 26 pages, arXiv:0911.5721.
  97. Mironov A., Morozov A., Zakirova Z., Comment on integrability in Dijkgraaf-Vafa $\beta$-ensembles, Phys. Lett. B 711 (2012), 332-335, arXiv:1202.6029.
  98. Mironov A., Morozov A., Zenkevich Y., Ding-Iohara-Miki symmetry of network matrix models, Phys. Lett. B 762 (2016), 196-208, arXiv:1603.05467.
  99. Mironov A., Morozov A., Zenkevich Y., On elementary proof of AGT duality from six dimensions, Phys. Lett. B 756 (2016), 208-211, arXiv:1512.06701.
  100. Mironov A., Morozov A., Zenkevich Y., Spectral duality in elliptic systems, six-dimensional gauge theories and topological strings, J. High Energy Phys. 2016 (2016), no. 5, 121, 44 pages, arXiv:1603.00304.
  101. Mironov A., Pakuliak S., On the continuum limit of the conformal matrix models, Theoret. and Math. Phys. 95 (1993), 604-625, hep-th/9209100.
  102. Moore G., Seiberg N., Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), 177-254.
  103. Morozov A., String theory: what is it?, Phys. Usp. 35 (1992), 671-714.
  104. Morozov A., Integrability and matrix models, Phys. Usp. 37 (1994), 1-55, hep-th/9303139.
  105. Morozov A., Challenges of matrix models, hep-th/0502010.
  106. Morozov A., Matrix models as integrable systems, hep-th/9502091.
  107. Morozov A., Zenkevich Y., Decomposing Nekrasov decomposition, J. High Energy Phys. 2016 (2016), no. 2, 098, 44 pages, arXiv:1510.01896.
  108. Nekrasov N., Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003), 831-864, hep-th/0206161.
  109. Nekrasov N., Okounkov A., Seiberg-Witten theory and random partitions, hep-th/0306238.
  110. Nekrasov N., Shatashvili S., Quantization of integrable systems and four dimensional gauge theories, in XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, 265-289, arXiv:0908.4052.
  111. Nemkov N., S-duality as Fourier transform for arbitrary $\epsilon_1$, $\epsilon_2$, J. Phys. A: Math. Theor. 47 (2014), 105401, 15 pages, arXiv:1307.0773.
  112. Nemkov N., On modular transformations of toric conformal blocks, J. High Energy Phys. 2015 (2015), no. 10, 037, 26 pages, arXiv:1504.04360.
  113. Nemkov N., Fusion transformations in Liouville theory, Theoret. and Math. Phys. 189 (2016), 1574-1591, arXiv:1409.3537.
  114. Novikov S.P., A method for solving the periodic problem for the KdV equation and its generalizations, Rocky Mountain J. Math. 8 (1978), 83-93.
  115. Okounkov A., Reshetikhin N., Vafa C., Quantum Calabi-Yau and classical crystals, in The Unity of Mathematics, Progr. Math., Vol. 244, Birkhäuser Boston, Boston, MA, 2006, 597-618, hep-th/0309208.
  116. Orantin N., Symplectic invariants, Virasoro constraints and Givental decomposition, arXiv:0808.0635.
  117. Ponsot B., Teschner J., Liouville bootstrap via harmonic analysis on a noncompact quantum group, hep-th/9911110.
  118. Ponsot B., Teschner J., Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of $\mathcal U_q(\mathfrak{sl}(2,{\mathbb R}))$, Comm. Math. Phys. 224 (2001), 613-655, math.QA/0007097.
  119. Shintani T., On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 167-199.
  120. Teschner J., From Liouville theory to the quantum geometry of Riemann surfaces, hep-th/0308031.
  121. Witten E., On the structure of the topological phase of two-dimensional gravity, Nuclear Phys. B 340 (1990), 281-332.
  122. Wyllard N., $A_{N-1}$ conformal Toda field theory correlation functions from conformal ${\mathcal N}=2$ ${\rm SU}(N)$ quiver gauge theories, J. High Energy Phys. 2009 (2009), no. 11, 002, 22 pages, arXiv:0907.2189.
  123. Zamolodchikov A.B., Zamolodchikov A.B., Conformal field theory and critical phenomena in two-dimensional systems, Soviet Sci. Rev. A Phys. 10 (1989), 269-433.

Previous article  Next article   Contents of Volume 13 (2017)